VIETNAM NATIONAL UNIVERSITY, HANOI
INTERNATIONAL SCHOOL

GRADUATION PROJECT

PROJECT NAME:

BUILDING A WEBSITE FOR EPIDEMIOLOGY
MANAGEMENT USING MONGODB DATABASE

Student’s name

Nguyén Manh Thanh

Hanoi - Year 2024

VIETNAM NATIONAL UNIVERSITY, HANOI
INTERNATIONAL SCHOOL

GRADUATION PROJECT

PROJECT NAME:

BUILDING A WEBSITE FOR EPIDEMIOLOGY
MANAGEMENT USING MONGODB DATABASE

SUPERVISOR: PhD. Nguyén Ding Khoa
STUDENT: Nguyén Manh Thanh
STUDENT ID: 19071627

COHORT: QHQZ2019

SUBJECTCODE: INS401401

MAJOR: Informatics Computer and Engineering

Hanoi - Year 2024

ACKNOWLEDGEMENT

| would like to express my deepest gratitude to Dr. Nguyen Dang Khoa for his
enthusiastic guidance throughout the process of completing this design project. Your

dedication and expertise have been instrumental in achieving the results we see today.

Your invaluable guidance and support throughout the project have been greatly
appreciated. Your extensive knowledge, consistency, and dedication have helped me

overcome challenges and develop a comprehensive skill set.

| also wish to acknowledge your invaluable assistance and advice in editing and
refining the project. Your constructive feedback and detailed comments have deepened

my understanding of the content and enhanced my self-evaluation skills.

Furthermore, | would like to extend my thanks to the entire school, my friends,
family, and everyone who shared their knowledge, opinions, and encouragement during
the project. The support from you and the community has been a significant source of

motivation, contributing greatly to the successful completion of this project.

| am confident that the knowledge and skills acquired here will serve as a solid
foundation for future development. Once again, I sincerely thank you and everyone who

supported me on this journey.

Best regards,

LETTER OF DECLARATION

| hereby affirm that this project “Building a website for epidemiology
management using mongodb database” is my own research, conducted under the
guidance of Dr. Nguyen Dang Khoa all results are honest and original, not copied from
any other work.

All references are clearly sourced in the bibliography. I accept full responsibility
for any violations of the school’s statutes. I have adhered to all regulations regarding
research ethics and intellectual property rights. | understand that failure to comply can

lead to serious consequences.

This project is a comprehensive study that involves critical thinking and innovative
ideas. It contributes to the existing knowledge in my field. | am prepared to defend my
work and learn from constructive criticism to improve my future research. | am

committed to upholding the highest standards of academic integrity...

Hanoi, June 2024
Author

Nguyen Manh Thanh

ABSTRACT

A comprehensive national epidemiology management website is essential for
several reasons. Firstly, it centralizes the management of epidemic outbreaks across the
country, providing a unified platform for health authorities, medical professionals, and
the public. This system enables real-time data sharing and collaboration among different
regions and agencies, ensuring that everyone has access to the latest information and
resources. By integrating various data sources, such as hospitals, laboratories, and
research institutions, the website can offer a holistic view of the epidemic landscape,
facilitating more effective and coordinated responses to outbreaks. This nationwide
approach helps in standardizing protocols and procedures, reducing discrepancies and

improving the overall efficiency of epidemiology management efforts.

Secondly, an epidemiology management website enhances the ability to monitor,
track, and predict epidemic trends. By aggregating data from various regions and health
facilities, the system can provide accurate and timely statistics on the spread of
epidemics. This data-driven approach enables health authorities to identify patterns and
potential hotspots early, allowing for proactive measures to be taken before situations
worsen. Predictive analytics can be employed to forecast the trajectory of outbreaks,
informing policy decisions and resource allocation. This foresight is crucial in preparing
for and mitigating the impact of future epidemics, ultimately saving lives and reducing

the burden on healthcare systems.

Lastly, the website plays a vital role in minimizing the spread of epidemics and
containing outbreaks. By providing daily updates on the status of various epidemics, it
keeps the public informed and aware of current health risks. This transparency is critical
in promoting adherence to public health guidelines and recommendations. Furthermore,
the website can facilitate the dissemination of crucial information on preventive
measures, treatment options, and vaccination campaigns, empowering individuals to
take proactive steps in protecting their health. In times of crisis, timely and accurate

information can make the difference between containment and escalation. The ability to

3

quickly update and disseminate information helps in mobilizing resources and personnel
to areas most in need, effectively curbing the spread of epidemics and preventing them

from becoming widespread epidemics.

LIST OF ABBREVIATIONS

Abbreviation Definition
ACID Atomicity, Consistency, Isolation, Durability
AJAX Asynchronous JavaScript and XML
API Application Programming Interface
CSS Cascading Style Sheets
GEOJSON Geographic JavaScript Object Notation
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
I/0 Input/Output
JS JavaScript
JWT JSON Web Token
NoSQL Not only SQL
SEO Search Engine Optimization
SSO Single Sign-On
RSA Rivest, Shamir, and Adleman

LIST OF FIGURES

Figure 2.1 Covid health risKS [L0]coovveiiiiieiieieeieee s 15
Figure 2.2 Covid-19 pandemiC [L1]....cccoocieiiiiiiiiiieeie e 16
Figure 2.3 Online epidemic management System [13]ccccooevieiiieiiesiesee e 17
Figure 2.4 OVerview USe CaSe TIAgIAMccueiuieriiiieeie e siiesreesee e sres e s sieesseesseesseeneas 18
Figure 2.5 Decay usecase chart notification management............ccocovvveveeneeneeneeneennes 19
Figure 2.6 Decay usecase chart dynamic declarationccccccevvevieiieiiesieese e, 20
Figure 2.7 Decay usecase chart personal declarationcccoecevveiieviieiiesieese e, 21
Figure 2.8 Decay usecase chart epidemic SItUALIONcccccevieiieiiiniiniee e 22
Figure 3.1 Front-end technology [14]ccoveeiie i 26
Figure 3.2 HOW EXPIress JS WOIKS?.....cuviiiie et ee e 33
Figure 3.3 MongoDB database backup and restore proCessccccvvvveiveieesveseeseennes 37
Figure 3.4 FIreDase [19] ..ot 40
Figure 3.5 Firebase Storage [20].....ccveiuieiieiiie e ee e 42
Figure 3.6 JWT bearer operating model [21].......ccooveiieiiiece e 45
FIGUIE 4.1 CHIBNT SEIVET ..c.vtiitie ettt ettt st st sbe et e nb e e be e enes 48
FIQUIe 4.2 DESIGN OVEIVIEWcccuvveieieeieieeeiie e sieeesiee et e e e ste e ssteessaeestaeanseeeaaeanaeesnneenneeens 49
Figure 4.3 Database design diagramccoccueeieeiiieiiee e see e saeesnee e 51
Figure 4.4 MongoDB deploy — deployment database............cccocovvviiniiiiiinicee, 61
Figure 4.5 MongoDB deploy — Create CIUSLErccoiiiieiiiiiieceee e 62
Figure 4.6 MongoDB deploy — connect from backend.............ccccoovviiiiiiii e 62
Figure 4.7 MongoDB deploy SucCesSTUllYcoooiriiiie e 63
Figure 4.8 Backend fOlder StrUCTUIE..........coouiiiiieie s 64
Figure 4.9 Frontend folder STTUCTUIEoooiie i 65
Figure 4.10 Deploy to Aptible with git puShcocviiiii i 66
Figure 4.11 Deploy to Aptible —add SSh KeY........ccooviiiiiiiii e 67
Figure 4.12 Deploy to Aptible - eNVIrONMEeNt..........c.covvieiiiiieiee e 67
Figure 4.13 Deploy to Aptible — prepare the template...........ccooveeiieii i 68
Figure 4.14 Deploy to Aptible - environment variablesccccccooveiiiiiiiiic e, 68
Figure 4.15 Deploy to Aptible - view logs in real timecccocovvvieniiinieniceee 69
Figure 4.16 Deploy to Aptible - eXPOSE PP ...veeveeiiieecie e 69

6

Figure 4.17 Deploy to Aptible successfully.........ccoveeiiiiiii e, 70

Figure 4.18 BUIld IN APIS (1) ..ueeiiiiieiieiieiienieeie et 71
Figure 4.19 BUIld IN APIS (2)..ueiiieiieiie ettt s s 72
Figure 4.20 BUIIA N APIS (3)..eeoiiiiiieiesieie et 73
Figure 4.21 BUIlA IN APIS (4) .eeiiiiiee et 74
Figure 4.22 LOogin INTEITACE........ociueiieiie it 75
Figure 4.23 RegiSter INTEITaCeccve i 76
Figure 4.24 Account approval iINterface..........cccovveviiieiie i 77
Figure 4.25 Personal information iNterface..........ccoovvveiie i 78
Figure 4.26 ANnouncement/POSt INTEITACEcccvvvuviiiiie i 79
Figure 4.27 Approve announcement/post iNterfaceccoevvveveiiv i 80
Figure 4.28 General declaration interface..........ccccovvevcie i 81
Figure 4.29 General declaration list INterface..........cccovviiiiiiiiiieiiieiiece e 81
Figure 4.30 Entry declaration INterface..........ccocvviiieiie e 82
Figure 4.31 Entry declaration list interface..........cccoovvvee i 82
Figure 4.32 Move declaration iNterfacecccvvvereiieiie i 83
Figure 4.33 Move declaration list iNterfaceccoccvvveiie i 83
Figure 4.34 Situation reports pandemic interface (1)cccevevevieeiieerie e 84
Figure 4.35 Situation reports pandemic interface (2)cccevevevieeieeiee e 84
Figure 4.36 Update situation pandemic interfaceccccoovveieiiniine s 85
Figure 4.37 Pandemic map iNterface (1)cccovevieiiieiee e see e 86
Figure 4.38 Pandemic map INterface (2)ccccveveeiiee i 87
Figure 4.39 Pandemic chart interface (1)cooveieiinieie e s 87
Figure 4.40 Pandemic chart interface (2)cooeveriiieieiesiee e s 88
Figure 4.41 New pandemiC INTEIfaCEcccoccveiiiiiiie e 89
Figure 4.42 New pandemic liSt iINterfaceccccvvveeiiee i 89
Figure 4.43 Add new pandemiC INTEITACEc.cueveriiieie s 90

LIST OF TABLES

Table 4.1 USEr SCNEMAcccuiiiiie ettt sree et e e 52
Table 4.2 AdMIN_IiNfO SCNEMAc.coiuiiiiiicie e 52
Table 4.3 Person_info SCNEMAcooviiiiiiiie e 53
Table 4.4 Medical_info SChEMAccooiiiiiiiei e 54
Table 4.5 DOMESTIC_QUESE SCNBMA.......cccuiiiiiieiie e 55
Table 4.6 Move_declaration SChemacccoooviiiii i 56
Table 4.7 Entry_declaration SCNEMA............ccoeiiiiiiiieiie e 58
Table 4.8 UNit SChema ..o e 60
Table 4.9 NOtIfiCation SCNEMAccoviiiiicie e 60

TABLE OF CONTENTS

ACKNOWLEDGEMENT ..ottt st sne e 1
LETTER OF DECLARATIONooiiiiiiiie ittt 2
ABSTRACT <ttt bbbt r et e e e s 3
LIST OF ABBREVIATIONSoo ittt 5
LIST OF FIGURES.......oo ottt sttt snne s 6
LIST OF TABLES ... oottt 8
TABLE OF CONTENTS ..ottt s 9
CHAPTER I: OVERVIEW OF THE TOPICcooiiiiiiecie e 12
1.1 Background Of the TOPICccveiiieiie e 12
1.2 ODJeCtiVes Of the TOPIC ...ccvee e e sae e e 12
R @ L4 1=T o1 (=T F TSP PSP PP UPPP 13
T @0 o Tod [11S] o] TSP P PP 13
CHAPTER II: SURVEY AND REQUIREMENTS ANALYSISc.cooviiiiiieiieins 14
2.1 CUITENT SLALUS SUNVEY ..eiiiieeieieeesieiessiiee e sitee e siee e sive e sstae s st e s s nnbe e s snbae e s nnbeeennseeeennes 14
2.2 FUNCLION OVEIVIEW ... viiiieiiieiieesiee sttt ettt st st sbaesteenneenna e s e 18
2.2.1 OVErview USE CaSe IagraM.........cocureerueriereeiesieseeee e et nneas 18
2.2.2 Decay USE CaSE QIAGIAMcueeveeeiiieeieeeieeeieesieessteeseeesraeesaeesteesaeesneeesnneens 19

2.3 CONCIUSTON.....eiiiiiet ettt b e e ne e e snee s 23
CHAPTER 11I: OVERVIEW OF TECHNOLOGYcooiiiiiiiiicieeie e 24
K T A 0] 1 (=10 o [PV RRURRP R RPROTRRPRTROTIN 24
300 I 10 11T o V2SRRI PRI 24
3.1.2 Leaflet teChNOlOgyccooviiiiieiiie e 27
TN R =T N 1S 1O N RSSO 29
3.1 A CANVASIS ...t 31

B2 BACKENG ...t 33
3.2.1 NOUE.JS ANU EXPIESS.JS . eeeuvitirieerrestisieeiestesieebesbessee b et ebe st sbesbe e e nbenreas 33
3.2.2 MONQODB ... 36
BL2.3 FIIBDASE ...ttt 40
32,4 JWT DRAIEI ...ttt nree s 44

KRG 0] o 111 [0 o USSR RUR PSP 47

CHAPTER IV: APPLICATION DEVELOPMENT AND DEPLOYMENT 48

4.1 ArchiteCtural deSIQNcc.eeuiiiiiii e 48
4.1.1 Software architeCture SEIECLIONcoovveiieiieiiei e 48
4.1.2 DESION OVEIVIEW.....veiieeeieeeieeieaeeetesseesiaesseestaestaestaesteestaesbeesseenseanseanaesnnesnnens 49
4.1.3 Database deSIGN........ccviiiieiieie et anne s 51
4.1.4 Description of the web development ... 61
415 BUIHE-IN APIS oottt ans 71

4.2 System INterface deSIGNcvcoviie i 75

o] 0 [od 131 (] o FO USSP RPN 90

CHAPTER V: CONCLUSION ..ottt 91

5.1 Results and eValUatioN............ceeciriiie e 91
5.1 L RESUIS .. et 91
5.1.2 EVAIUALION ..ottt st e e snreennne e 92

oI I 41 U o o OSSPSR 92

5.3 FULUIE deVEIOPMENTt eae e snneennne s 93

REFERENGCES. ...ttt sttt nee s 94

10

CHAPTER I: OVERVIEW OF THE TOPIC

This chapter introduces the topic, providing the background and rationale for
choosing to develop epidemiology management website system. It also outlines the main

objectives of the project.
1.1 Background of the topic

In recent years, global warming has led to the ice phenomenon, accompanied by
epidemics from ancient times preserved in blocks of ice. These epidemics have never
appeared before, and there is no vaccine to prevent them or specific treatment methods.

The consequences lead to rapid epidemic outbreaks.

Along with the development of technologies that humans have invented, we need
to thoroughly apply those applications to the consequences that humans have indirectly

created.

Hopefully “Building a website for epidemiology management using MongoDB
database” can contribute to preventing unpredictable consequences that we can hardly

imagine.
1.2 Objectives of the topic

To build a system with such features, | chose to make a website system for three

types of users:

o Manager: allows the management and approval of all accounts on the system,
enables notifications to the entire system, updates the epidemic situation across
units, and calculates the epidemic situation nationwide

o Medical staff: allows the creation of new dynamic forms to survey the epidemic
situation from the public, collects and compiles the results of declarations from
the public, views epidemic statistics and charts, and issues notifications such as

vaccination information to all units and the entire country.

12

o Civilian: allows viewing the epidemic situation in the local area and nationwide,
tracking the progression of the epidemic over time, viewing epidemic maps,
filling out forms issued by healthcare staff, declaring entry if entering the country,
declaring movement if traveling within the country, and posting questions or

requests for assistance if needed.

1.3 Oriented
Build a website system for the above three agents, accompanied by a server that

provides APIs to be able to implement the functions and features.
The system will be divided into 2 main parts: Building frontend and backend.

e Frontend is to build a user interface specifically for user agents such as
administrator, medical staff and civilian using HTML, CSS and JS technology.
e Backend will build a service that provides APIs specifically for businesses, using

NodelJS technology and databases using MongoDB technology.

1.4 Conclusion

The overview provided a clear understanding of the background and importance of
epidemiology management system development. This information lays the foundation
for approaching the next steps effectively and purposefully. Next, we will conduct a
survey and requirements analysis, an important step to collect detailed information about
specific needs and actual conditions, thereby determining the exact requirements for the
system. This will ensure the system is designed and developed in accordance with actual

needs.

13

CHAPTER II: SURVEY AND REQUIREMENTS ANALYSIS

Following the overview, this chapter delves into the survey and requirements
analysis. The goal is to gather necessary information and identify the specific

requirements for the system.

2.1 Current status survey

The advent of the COVID-19 pandemic has underscored the vulnerability of global
health systems and the importance of rapid, coordinated responses to health crises. This
essay explores the various challenges posed by such pandemics and discusses potential
solutions. This chapter provides the background and rationale for choosing to develop
an epidemiology management website system. It also outlines the main objectives of the

project.

Health risks:

The primary concern of any pandemic is the health risk it poses to the global
population. COVID-19, for instance, has proven to be a highly infectious epidemic,
causing severe illness and death in a significant number of cases. The virus primarily
affects the respiratory system, but its impact extends to other organs, leading to a range
of complications. The elderly and those with underlying health conditions are
particularly at risk, further straining healthcare systems. Take a look at this insightful
infographic which delves into the promising role of mesenchymal stem cells (MSCs) in
COVID-19 treatment, showcasing the rapid global spread of the virus and the anticipated

therapeutic approaches.

14

A MSCs frequently found among anticipated treatments for COVID-19

Rapid global spread of SARS-CoV-2 and Anticipated Treatments . =
COVID-19 deaths (7% of confirmed cases) for COVID-19 e

300000

& =2o00000

& 100000

&g

=

E > 220.000 deaths from

= COVID-19 until Apr-29 [i — T

S =1 Antiviral £ Other MSCs

S 220000 ---Tecccccccaaaann == TCM = MSC-EVs
o= =3 Other =3 Other cell

S <1 b = N > < Relative contribution to
R S (T (I o clinical trials for COVID-19
Date in the Year 2020 (Total N=597 registered)

= Separating promise from peril in MISC therapy of COVID-19 \

Poor quality MSC product High quality MSC product and
_unsuitable method of clinical de appropriate method of clinical delivery

Insuff N ent sssss Factor \ -,
unchecked Del very s

E”/

Promotes procoagulant adverse events

COVID-19 Patient I

Promotes beneficial effects of MSCs

Thrombotic Thrombo- Disseminated Immuno- Organ
S Multi o rgan Embolism Intravascular \ modulation Protection
\ Failure Ischemia Coagulation $) * <D s
QM a2 4 <= o = S
A Y st o -~
= =} = = = —= 1 * —_ — =3
; 5o Seetss o) o = SzeEiE - B
- ARDS pneumonia Eﬁ;m
\\ Sepsis septic shock, inflammation

Pr slant ted risk of DIC, thromboembolism, multi-organ failure!

Figure 2.1 Covid health risks [10]

Figure 2.1 presents the rapid global spread of SARS-CoV-2 and associated deaths,
anticipated treatments for COVID-19, and particularly Mesenchymal Stem Cells
(MSCs) therapy. It shows how MSCs can be separated from periosteum tissue and their
potential therapeutic effects against COVID-19. The infographic also discusses the risks
associated with MSC therapy. It provides a comprehensive view of the role of MSC
therapy in treating COVID-19.

Rapid spread:

The rapid spread of COVID-19 has been facilitated by globalization and increased
human mobility. The virus quickly traversed borders, infecting millions worldwide
within a few months. This rapid spread has overwhelmed health systems, leading to
shortages of medical supplies and healthcare workers, thereby exacerbating the crisis.

Epidemioloqy:

Understanding the epidemiology of a pandemic is crucial for its management.
Epidemiologists study the distribution and determinants of health-related states in
specific populations and apply this study to control health problems. In the case of

COVID-19, epidemiological studies have been instrumental in understanding the virus’s

15

transmission dynamics, informing public health interventions. Look at this
comprehensive visual representation which captures the early stages of the COVID-19
pandemic, detailing the initial case numbers, spread patterns, and key milestones in the

outbreak’s evolution.

(A) wss Confirmed cases

1 |
l.l

1. WHO officially named this new disease

Wuhan reported 27 unknown 80 000+
pneumonia cases, some had close
contact with the Huanan Seafood 60 000
Wholesale Market and seven of

them were serious cases 40 000+

20 0004 |

Huanan Seafood

Wholesale Market i
was closed 1500+ |

|
|

e |00 e
- N
§83

02 604

0} UBf ==
-OZUBF-' .

The unknown pathogen
was confirmed as a novel Human to human
coronavirus by China transmissions were

First phase
[Second phase coc officially reported
(-2
o

£ uer
— || GO

Wuhan confirmed 41 1. Ten family cluster as Coronavirus Disease 2019, abbreviated

cases caused by the infection cases were COVID-19; 2. ICTV named this novel

novel coronavirus and reported in Guangdong; coronavirus as Severe acute respiratory

one of them died 2. Wuhan goes into syndrome coronavirus 2, abbreviated
lock-down SARS-CoV-2

(B8

R S e p—

Trends in Molocular Medicine

Figure 2.2 Covid-19 pandemic [11]

Figure 2.2 presents for three separate graphs related to the COVID-19 pandemic.Graph
A shows a timeline from December 2019 to February 2020, indicating the number of
confirmed cases and deaths, with key events such as the closure of the Wuhan seafood
market and WHO announcements. Graph B is a map of China showing the distribution
of confirmed cases across provinces. Graph C is a global map indicating the spread of
COVID-19 to other countries. This image represents the early spread and impact of
COVID-19 globally.

Isolation and treatment:

Isolation and treatment are key strategies in managing a pandemic. Isolation helps

to curb the spread of the virus, while treatment protocols ensure that those infected
16

receive appropriate care. However, these measures require substantial resources and
pose significant logistical challenges. In the case of COVID-19, the sudden surge in

cases led to a shortage of isolation facilities and essential medical supplies.

Public communication:

Effective communication is vital during a pandemic. Authorities must keep the
public informed about the situation, including the risks involved, preventive measures,
and progress in combating the epidemic. During the COVID-19 pandemic, regular
briefings and updates from health authorities have been crucial in managing public

expectations and ensuring adherence to safety protocols.

Online epidemic management system:

The COVID-19 pandemic has highlighted the importance of leveraging technology
in epidemic management. An Online Epidemic Management System 4.0 can play a
pivotal role in tracking the spread of the epidemic, managing resources, and facilitating
communication between healthcare providers and the public. Such a system can provide

real-time data, enabling swift responses to change in the pandemic’s trajectory. [9]

Health facili —_— >
> ' \ / ' h ®
Informant Surveillance officer Case supervisor Case officer

*

Surveillance \ >
supervisor \ 74 7/

™ D

Contact supervisor Contact officer

Figure 2.3 Online epidemic management system [13]

Figure 2.4 presents a health surveillance process. It starts with a “Health facility”, leading
to an “Informant” and then to a “Surveillance officer.” From there, it splits into two

paths: one leading to a “Case supervisor,” then to multiple “Case officers,” and another

17

path leading to a “Surveillance supervisor,” which further leads to a “Contact supervisor”
and then multiple “Contact officers.” This flowchart outlines the hierarchy and workflow
in health surveillance, crucial for understanding how health data is managed and how

cases are followed up within an organization.

2.2 Function overview

2.2.1 Overview use case diagram

(o)

info

W

A

ilivian

=
_

manager

Epidemic
situation ‘

Dynamic
declaration
Account approve

Personal
declaration

)

medical_staff

Figure 2.4 Overview use case diagram

Figure 2.5 presents for three main actors: manager, medical staff and civilian.[2]

Description below:

e For manager, there are the following main use cases: register, login, logout,
update personal info, notification management, approve account, update epidemic

situation,etc.

18

e For medical staff, there are the following main use cases: register, login, logout,
update personal info, post notification, epidemic situation, dynamic declaration,
etc.

e For civilian, there are the following main use cases: register, login, logout,

notification management, personal declaration, etc.

2.2.2 Decay use case diagram

o)

Post Post
announcements i i ical
notices /

medical_staff

—_—
View
manager notifications

i
!

. : <<\‘¢ud >>
<<inclyge>> <<inclfde>> inede
- ' ~
.

S ~
N

View

epidemiological

notices from
medical staff

L
View View questions,

announcements ask for help from
from manager cilivian

Post questions, \
ask for help

cilivian

Figure 2.5 Decay usecase chart notification management

Figure 2.6 presents for actors: “manager,” “medical staff,” and “civilian”. Description

below:

Actor functions:

e The “manager” actor has three use cases associated with them: ‘“Post
announcements,” “View notifications,” and “View announcements from medical
staff.”

e The “medical staff” actor has four use cases: “Post epidemiological notices,”
“View notifications,” “View epidemiological notes from medical staff,” and

“Post questions, ask for help.”

19

The “civilian” actor is connected to two use cases: “View notifications” and

“View questions, ask for help from civilian.”

Relationships between functions:

The “Post announcements” function of the “manager” actor seems to be included
in the “View announcements from medical staff” function of the same factor,
indicating that the manager can view the announcements they post.

The “Post epidemiological notices” function of the “medical staff” factor is
included in the “View epidemiological notes from medical staff” function,
suggesting that medical staff can view the notices they post.

The “View notifications” function is common to all factors, indicating that all
factors can view notifications.

The “Post questions, ask for help” function of the “medical staff” factor and the
“View questions, ask for help from civilian” function of the “civilian” actor seem
to be related, suggesting a platform where civilians can view and respond to

questions posted by medical staff.

Add a new
dynamic form
declare

Update a
dynamic form
declare

Delete a dynamic
form declare

e

e

View list
dynamic form
declare

medical_shafr\

View list declare ™~ <<extend>> _ _ _ _
from cilivian

/cnivian
B Declare a
dynamic form

Figure 2.6 Decay usecase chart dynamic declaration

Figure 2.7 presents for actors: “medical staff” and “civilian”. Description below:

20

Actor functions:

o The “medical staff” actor has three use cases associated with them: “View list
declare from civilian,” and three other functions that are not fully visible due to
the image cutoff.

e The “civilian” actor is connected to four use cases: “Add a new dynamic form
declare,” “Update a dynamic form declare,” “Delete a dynamic form declare,”

and “Declare a dynamic form.”

Relationships between functions:

e The “Add a new dynamic form declare,” “Update a dynamic form declare,” and
“Delete a dynamic form declare” functions of the “civilian” actor extend to the
“View list declare from civilian” function of the “medical staff” actor, indicating
that any additions, updates, or deletions made by civilians can be viewed by the

medical staff.

View declare ™ <<extends> -
health list Declare health

Viewdeclare N ____ <<edend->_ __ _ __ - Declare moving —
I moving list

d cilivian
medical_staff

View declare TN ______ - <sextend=> _ _ _ _ _ - Declare entry
entry list

Figure 2.7 Decay usecase chart personal declaration

Figure 2.8 presents for actors: “medical_staff” and “civilian”. Description below:

21

Actor functions:

The “medical staff” actor has three use cases associated with them: “View
declare health list,” “View declare moving list,” and “View declare entry list.”
The “civilian” actor is connected to three use cases: “Declare health,” “Declare

moving,” and “Declare entry.”

Relationships between functions:

The “Declare health” function of the “civilian” actor extends to the “View declare
health list” function of the “medical staff” actor, indicating that health
declarations made by civilians can be viewed by the medical staff.

Similarly, the “Declare moving” function of the “civilian” actor extends to the
“View declare moving list” function of the “medical_staff” actor, suggesting that
moving declarations made by civilians can be viewed by the medical staff.

The “Declare entry” function of the “civilian” actor extends to the “View declare
entry list” function of the “medical_staff” actor, indicating that entry declarations

made by civilians can be viewed by the medical staff.

manager

Update the
epidemic

situation in each
unit

- - - —==extend>>

View epidemic
situation of units
in table form

e <<éx<tgr|d>>
—] - T
N

View epidemic
situation of units
in map

View epidemic
situation of units
over time on the
chart

\

medical_staff

Figure 2.8 Decay usecase chart epidemic situation

22

Figure 2.9 presents for actors: “manager,” “medical staff,” and “civilian”. Description

below:

Actor functions:

The “manager” actor has one use case associated with them: “Update the
epidemic situation in each unit.”

The “medical staff” actor has two use cases: “View epidemic situation of units
in table form™ and “View epidemic situation over time on the chart.”

The “civilian” actor is connected to two use cases: “View epidemic situation of

units in table form” and “View epidemic situation of units in map.”

Relationships between functions:

The “Update the epidemic situation in each unit” function of the “manager” actor
seems to extend to the “View epidemic situation of units in table form” function
of the “medical_staff” actor, indicating that updates made by the manager can be
viewed by the medical staff in a tabular format.

Similarly, the “View epidemic situation of units in table form” function of the
“medical_staff” actor extends to the same function of the “civilian” actor,
suggesting that civilians can also view the epidemic situation of units in a tabular
format.

The “View epidemic situation of units in map” function of the “civilian” actor

seems to be an alternative way for civilians to view the epidemic situation.

2.3 Conclusion

The survey and requirements analysis have given us a detailed understanding of

the essential components needed for the system. By gathering data from stakeholders

and analyzing technical factors, we have identified specific requirements, guiding the

system's development process. Next, we will explore the technology used for realizing

the identified requirements.

23

CHAPTER III: OVERVIEW OF TECHNOLOGY

With the requirements identified, this chapter presents the software and technology

used. This is an important foundation for building the system.
3.1 Frontend

The front-end development of this project relies on various technologies and
languages, including HTML, CSS, JavaScript, and jQuery. Despite not being the latest
technologies, they effectively solve challenges related to User Interface (Ul) and User

Experience (UX).

Initial Stage: At the beginning, HTML, CSS, and JavaScript are used to create the
basic structure of the website. HTML forms the backbone by defining the structure, CSS
styles the user interface to make it visually appealing, and JavaScript adds dynamic

interactions to make the site interactive.

3.1.1 jQuery

Ul-UX Development Stage: During the development phase focused on enhancing
Ul and UX, jQuery is used to add dynamic effects, animations, and interactions to the
website without sacrificing performance. This lightweight library is easy to deploy,

integrates seamlessly into projects, and aids in SEO optimization.

Advantages of jQuery:

JQuery, a popular JavaScript library, simplifies complex tasks with its concise
syntax, reducing the amount of code required for common operations. It addresses cross-
browser compatibility issues, ensuring consistent behavior across different web browsers
and saving developers from handling these inconsistencies. jQuery's intuitive APl makes
DOM manipulation, event handling, and animation straightforward for both beginners
and experienced developers. Additionally, jQuery enhances AJAX request efficiency,
simplifying asynchronous communication. Its extensive plugin library allows developers

to quickly add pre-built functions to their projects, saving development time and effort.

24

Overall, jQuery facilitates more efficient and maintainable code, making it a valuable

tool for creating dynamic and interactive web applications.

Further benefits of jQuery:

o Lightweight, improving page load speeds.
e Easy to deploy and integrate.

e Enhances SEO for better search engine performance.

Disadvantages of jQuery:

While jQuery has been beneficial in simplifying web development, it also has its
downsides. One notable drawback is its potential impact on page load times, as it adds
to the overall size of the JavaScript files that need to be downloaded and executed. This
can be particularly problematic on mobile devices with slower network connections. In
modern web development, where performance optimization is critical, the additional
weight of jQuery can be a disadvantage. Moreover, as browsers have advanced, native
JavaScript has become more powerful, reducing the necessity for jQuery in some
scenarios. Developers skilled in modern JavaScript frameworks might find jQuery adds
unnecessary complexity and overhead to their projects. Additionally, jQuery may not
perform optimally with complex web applications that require high flexibility. While
jQuery remains useful in certain situations, developers should weigh its benefits against

these potential drawbacks and consider alternatives when appropriate.

Responsive Design:

Cross-Platform Deployment Stage: Responsive design ensures that the website is
adaptable and accessible across various devices, from mobile phones and tablets to
desktops. This approach guarantees a consistent and user-friendly experience regardless

of the device being used.

25

Future plan:

Using React]S: The long-term strategy involves transitioning to ReactJS for the
front-end development. ReactJS was chosen for its high performance and code
reusability, which will enhance the user experience and reduce application complexity.
This move aims to improve scalability and streamline code management, aligning with

modern development standards.

HTML 5 [e -0

Semantic More Action

Javascript JQuery

Event Based CrossBrowsing Asynchronous

A _]

By Dabbexsahi

Figure 3.1 Front-end technology [14]

Figure 3.1 presents eight different web development technologies or concepts. These
include “HTML 5 Semantic”, “CSS 3 More Action”, “Bootstrap Flexibility”, “Javascript
Event Based”, “JQuery CrossBrowsing”, and “AJAX Asynchronous”. Each icon
symbolizes a key element of modern web design and programming, highlighting the
unique features of each technology. This image is relevant for those interested in web
development as it visually summarizes important technologies used to create dynamic

and responsive websites.

26

3.1.2 Leaflet technology

Leaflet is a widely used open-source JavaScript library for interactive maps,
offering a simple and lightweight solution for embedding maps on web pages. It supports
various map layers, including tiled maps, vector layers, and markers, enabling
developers to create rich, interactive map experiences. Leaflet's design emphasizes
performance, usability, and ease of use, making it ideal for both novice and experienced

developers. [5]

One of the standout features of Leaflet is its responsiveness and compatibility with
mobile devices. It provides smooth animations and seamless interaction on both desktop
and mobile platforms, ensuring a consistent user experience across different devices. The
library also supports a wide range of map providers, such as OpenStreetMap, Mapbox,
and Google Maps, giving developers flexibility in choosing the best map service for their

application.

Leaflet's extensibility is another key advantage. It offers numerous plugins that
extend its core functionality, allowing for features like heatmaps, clustering, and
geocoding. This extensibility makes it easy to customize and enhance the map according
to specific project requirements. Additionally, Leaflet's straightforward API and
extensive documentation facilitate quick learning and implementation, reducing the

development time.

In summary, Leaflet's lightweight nature, cross-platform compatibility, and
extensive plugin ecosystem make it a powerful tool for integrating interactive maps into
web applications. Its user-friendly approach and robust performance capabilities ensure

that developers can deliver high-quality, responsive maps with minimal effort.

Advantages:
o Lightweight and Efficient: Leaflet is known for being lightweight, which means

it has a smaller file size compared to other mapping libraries like Google Maps

27

API or OpenLayers. This efficiency leads to faster loading times and improved
performance, particularly beneficial for web applications with limited resources.
Easy to Use: Leaflet offers a simple and intuitive API, making it easy for
developers to integrate and use. Its straightforward syntax and well-documented
examples allow even those with minimal experience in mapping technologies to
get started quickly.

Customizable: Leaflet is highly customizable. Developers can easily add custom
map layers, markers, popups, and other features. The extensive plugin ecosystem
allows for adding functionalities such as heatmaps, routing, and drawing tools
without much effort.

Open Source: Being open source, Leaflet is free to use and modify. This fosters a
collaborative community where developers can contribute to the library, report
issues, and share plugins and extensions, enhancing the overall functionality and
reliability of the tool.

Responsive Design: Leaflet supports responsive design out of the box, ensuring
that maps look good and are usable on a variety of devices, from desktops to

mobile phones. This adaptability is crucial in modern web development.

Disadvantages:

Limited Advanced Features: While Leaflet excels in simplicity and ease of use, it
lacks some of the advanced features found in more robust mapping solutions like
Google Maps. For example, it does not natively support features like indoor
mapping, street view, or detailed 3D visualization.

Dependency on Third-Party Services: Leaflet often relies on third-party tile
providers (e.g., OpenStreetMap, Mapbox) for map tiles. This dependency can
introduce limitations or costs, especially if the external service has usage
restrictions or requires a subscription for higher levels of access.

Performance with Large Datasets: When dealing with very large datasets or high-

frequency real-time data, Leaflet's performance can degrade. Unlike some

28

commercial alternatives optimized for handling extensive data sets efficiently,
Leaflet may require additional optimization techniques or plugins to maintain
performance.

Less Support and Documentation Compared to Major Alternatives: While Leaflet
has good documentation and community support, it is not as extensive as that of
major commercial mapping solutions like Google Maps API. This can sometimes
make it harder to find solutions to complex problems or get support for less

common use cases.

3.1.3 GeoJSON

GeoJSON is a widely used format for encoding a variety of geographic data

structures using JavaScript Object Notation (JSON). It is a powerful tool for representing

geographical features, their attributes, and even their spatial extents. GeoJSON supports

various geometry types, such as points, lines, polygons, multi-points, multi-lines, and

multi-polygons, enabling it to describe complex spatial relationships. This format is

lightweight and human-readable, making it an excellent choice for web-based mapping

applications. [8] Below is an example of GeoJSON to Map.

Advantages of GeoJSON in building web maps:

Simplicity and Readability: GeoJSON's use of JSON makes it easy to read and
understand for both humans and machines. This simplicity facilitates quick
debugging and seamless data exchange between the server and the client.
Compatibility: GeoJSON is natively supported by many web mapping libraries,
including Leaflet, Mapbox, and OpenLayers. This broad compatibility ensures
that developers can integrate spatial data into web maps with minimal effort.
Interactivity: The JSON format allows for the inclusion of rich metadata
alongside geographic coordinates. This feature enhances the interactivity of web
maps, enabling features such as pop-ups, tooltips, and custom styling based on

attribute data.

29

e Performance: GeoJSON is lightweight, which can lead to faster load times and
better performance, especially for applications that require quick rendering of
spatial data in the browser.

o Versatility: GeoJSON can represent both simple and complex geometries, making
it suitable for a wide range of mapping applications, from simple point markers

to detailed multi-polygon regions.

Disadvantages of GeoJSON in building web maps:

e Scalability Issues: While GeoJSON is suitable for small to medium-sized
datasets, its performance can degrade with very large datasets. The verbosity of
JSON can lead to large file sizes, which may impact load times and browser
performance.

e Limited Precision: GeoJSON stores coordinate as floating-point numbers, which
can result in precision loss for highly detailed spatial data. This limitation might
be significant for applications requiring high-precision geographic information.

e Lack of Advanced Features: GeoJSON does not natively support more advanced
geographic features like projections, topology, or spatial indexes. These
limitations can necessitate additional processing or the use of complementary
formats and tools for advanced spatial analysis.

e Security Concerns: As with any data format used in web applications, there are
security considerations. GeoJSON, being a text-based format, can be susceptible
to injection attacks if not properly sanitized and validated.

e Browser Dependency: The performance and capabilities of GeoJSON rendering
can vary depending on the browser and device. While modern browsers handle
GeoJSON well, older or less powerful devices may struggle with complex or large

datasets.

30

3.1.4 CanvasJS

CanvasJS is a versatile and powerful JavaScript library designed to create

interactive and dynamic charts and graphs. It leverages the HTML5 Canvas element to

render high-performance charts, making it an excellent choice for visualizing data in web

applications. CanvasJS supports a wide variety of chart types, including line charts, bar

charts, pie charts, and more, and it is known for its ease of use, flexibility, and smooth

animations. This makes CanvasJS a popular tool for developers looking to embed real-

time data visualization into their websites and applications. [6]

Advantages of using CanvasJS for drawing charts to represent epidemic data:

Interactivity: CanvasJS charts are highly interactive, allowing users to hover,
click, and zoom into specific data points. This interactivity can be particularly
useful in epidemic data visualization, where users may need to explore detailed
trends and patterns.

Performance: CanvasJS is optimized for performance, providing smooth
rendering even with large datasets. This is crucial when dealing with extensive
epidemic data that can include numerous data points and complex time-series
visualizations.

Ease of Use: The library is user-friendly, with a straightforward API that
simplifies the process of creating and customizing charts. Developers can quickly
set up and integrate charts into their web pages, reducing development time and
effort.

Customization: CanvasJS offers extensive customization options, allowing
developers to tailor the look and feel of the charts to match the specific
requirements of epidemic data visualization. This includes custom colors, labels,
tooltips, and more.

Cross-Browser Compatibility: CanvasJS ensures that charts look consistent and

perform well across different web browsers, which is essential for reaching a

31

broad audience. This reliability makes it a robust choice for public-facing

epidemic data dashboards.

Disadvantages of using CanvasJS for drawing charts to represent epidemic data:

e Learning Curve: While CanvaslJS is user-friendly, there is still a learning curve
associated with mastering its API and features. New users may require some time
to become proficient in using the library effectively.

e Limited Free Features: CanvasJS offers a limited free version, with some
advanced features and functionalities restricted to the paid version. This can be a
limitation for developers or organizations with budget constraints.

e Performance with Extremely Large Datasets: Although optimized for
performance, rendering extremely large datasets can still pose challenges. In such
cases, additional techniques like data aggregation or server-side processing might
be necessary to maintain performance.

e Dependency on JavaScript: CanvasJS relies heavily on JavaScript, which means
that users with JavaScript disabled in their browsers will not be able to view the
charts. Additionally, developers need to ensure that their JavaScript code is secure
and optimized.

e Complex Customizations: For very specific or complex customizations,
developers might find CanvasJS to be somewhat restrictive compared to more
comprehensive data visualization libraries. Advanced customizations may require

additional coding and workaround solutions.

32

3.2 Backend
3.2.1 Node.js and express.js

Node.js is a powerful open-source server environment that runs on various
platforms, including Windows, Linux, and Mac OS. Built on Chrome's V8 JavaScript
engine, Node.js uses an event-driven, non-blocking 1/0 model, which makes it
lightweight and efficient. This model is particularly well-suited for real-time
applications, such as chat applications and live data feeds, where maintaining numerous
simultaneous connections is essential. [4] Below is an illustration of how the express.js

application framework for Node.js.

How Express js works?

\
y

HTTP Request

HTTP Response

—

Figure 3.2 How Express js works?

—EI 2R 2R

CSRF Middleware
Auth Middleware
Main Task

Matched Route
CORS Middleware

/
.

Figure 3.5 presents how Express.js, a web application framework for Node.js, works. It
shows the flow of an HTTP request through various middleware functions before it
reaches the main task and then returns an HTTP response. The process begins with an
HTTP Request being sent to a Matched Route, then sequentially passing through CORS
Middleware, CSRF Middleware, Auth Middleware, and finally reaching the Main Task.
After processing in the Main Task, an HTTP Response is generated and sent back. This
diagram is significant as it visually represents the middleware pattern used in Express.js,
which is crucial for developers to understand for building efficient web applications.
33

Node.js's package ecosystem, npm (Node Package Manager), is one of the largest
and most vibrant in the world. It offers a vast range of libraries and tools that streamline
development tasks, allowing developers to focus more on coding and less on
configuration and setup. This ecosystem's richness contributes significantly to Node.js's

popularity among developers. [4]

Express.js, a minimalist web framework for Node.js, provides a robust set of
features for building web and mobile applications. It simplifies the development of
server-side applications by offering a thin layer of fundamental web application features,
without obscuring Node.js's core functionalities. Express.js is known for its simplicity
and flexibility, allowing developers to organize their application in a way that suits their

needs.

Express.js handles a variety of HTTP requests and supports robust routing. It
allows developers to define routes for different HTTP methods and URLs, making it
easier to manage different parts of a web application. Middleware functions in Express.js
can process requests before reaching the final route handler, which is useful for tasks

like authentication, logging, and data validation.

The combination of Node.js and Express.js provides an efficient environment for
developing scalable web applications. Node.js's asynchronous nature ensures that
applications can handle a high number of simultaneous connections with minimal
overhead. Express.js adds structure and organization to Node.js applications, enabling
developers to create robust, maintainable code. Together, they are a powerful duo for
modern web development, particularly in building RESTful APIs and full-stack

applications.

Advantages:

e Fast and Efficient: Node.js uses the V8 JavaScript engine from Google, which
compiles JavaScript directly to machine code, making it extremely fast. Its non-
blocking, event-driven architecture allows it to handle multiple requests

34

simultaneously, which is highly efficient for 1/O-heavy operations like API
requests or accessing databases.

Single Programming Language: With Node.js, developers can use JavaScript for
both client-side and server-side development. This unification simplifies the
development process, allows for code reuse, and makes it easier for front-end
developers to transition to back-end development.

Extensive Ecosystem: Node.js has a rich ecosystem with npm (Node Package
Manager), which provides access to a vast repository of open-source libraries and
modules. This allows developers to quickly add functionality to their applications
without reinventing the wheel.

Scalability: Node.js is designed for building scalable network applications. It can
handle a large number of simultaneous connections with high throughput, making
it suitable for real-time applications like chat apps and live streaming services.
Active Community: Node.js has a large and active community that contributes to
its ongoing development and support. This means frequent updates, a plethora of
tutorials, and a wealth of shared knowledge that developers can tap into.
Express.js Framework: Express.js, built on top of Node.js, is a minimalist web
framework that simplifies the development of web applications and APIs. It
provides a robust set of features for building single-page, multi-page, and hybrid
web applications.

Disadvantages:

Callback Hell: Node.js heavily relies on callbacks to handle asynchronous
operations, which can lead to deeply nested callback structures known as
"callback hell". This can make the code difficult to read and maintain. However,
this issue can be mitigated by using Promises or async/await syntax.
Single-threaded Limitations: While Node.js's single-threaded nature is efficient
for 1/0O-bound operations, it can be a limitation for CPU-bound tasks. Heavy
computation tasks can block the event loop, leading to performance bottlenecks.
Solutions like worker threads or offloading tasks to separate processes can help,
but they add complexity.

Immaturity of Tooling: Compared to more mature ecosystems like Java or .NET,
some developers may find Node.js's tooling and libraries to be less polished or

35

mature. While this is improving rapidly, it can still be a concern for larger,
enterprise-level applications.

e Lack of Strong Typing: Node.js and Express.js are primarily JavaScript-based,
which is a dynamically typed language. This can lead to issues with type safety
and can make large codebases harder to manage. However, using TypeScript with
Node.js can mitigate this issue by adding static type checking.

e Security Concerns: As with any web technology, security can be a concern.
Node.js applications, especially when using numerous third-party packages, can
be vulnerable to security threats if not properly managed. Regular updates and
security audits are essential to mitigate these risks.

e Concurrency Model: Node.js's concurrency model, which uses the event loop, is
not suited for applications requiring heavy multi-threading. While suitable for
I/0-bound tasks, it may not perform as well as multi-threaded environments for
CPU-intensive applications.

3.2.2 MongoDB

MongoDB is a popular open-source NoSQL database known for its high
performance, scalability, and flexibility. Unlike traditional relational databases,
MongoDB stores data in flexible, JSON-like documents, which allows for a more
dynamic schema. This flexibility makes MongoDB an excellent choice for applications

that require quick iterations and frequent changes to data structures. [3]

One of the key features of MongoDB is its ability to handle large volumes of data
and high-throughput operations. Its distributed architecture supports horizontal scaling,
meaning that as your data grows, you can distribute it across multiple servers or clusters.
This scalability is crucial for applications that anticipate significant growth and need to

maintain performance under heavy loads.

MongoDB also excels in handling complex data types and hierarchical data
models. Its document-oriented storage model allows embedding of documents within

documents, making it easier to represent complex relationships in a natural and intuitive

36

way. This feature reduces the need for expensive joins and can lead to more efficient

query performance.

The query language in MongoDB is another strength, offering a rich set of
operators and expressions for filtering and transforming data. MongoDB's aggregation
framework supports operations such as filtering, grouping, sorting, and reshaping data,
enabling sophisticated data analysis directly within the database. Additionally,
MongoDB provides powerful indexing capabilities, including geospatial and text search

indexes, which enhance query performance and support diverse application needs.

For developers, MongoDB offers a range of tools and integrations. The MongoDB
Atlas cloud service provides automated deployment, scaling, and backups, reducing the
operational overhead. The MongoDB Stitch backend-as-a-service platform allows
developers to connect to various services and create serverless applications. Moreover,
the community around MongoDB is vibrant, with extensive documentation, tutorials,
and a wealth of third-party libraries and tools available. Below is an image depicting the

MongoDB database backup and restore process.

\

Store 1n local disk)
(Incremental 1]

MongoDB ﬂ__________j_______,__lb[Full Backup 1

Database
VM l Incremental 2 J
) 2
4

[Oplogs Incremental 3]

_ -
/

) B
. Restore }

Database
VM

‘ MongoDB

Figure 3.3 MongoDB database backup and restore process

37

Figure 3.8 presents for depicts a MongoDB database backup and restore process. It

involves a full backup stored on a local disk, and three incremental backups. The

database and ‘Database VM’ are central components. The ‘Oplogs’ box represents

operation logs. The process also includes a restore operation from the local disk to the
Database VM.

Advantages:

Flexible Schema Design: MongoDB uses a document-oriented data model, which
allows for flexible schema design. Unlike traditional relational databases,
MongoDB doesn't require a predefined schema, enabling developers to store and
manage data in a JSON-like format (BSON). This flexibility is ideal for
applications where data structures can evolve over time.

Scalability: MongoDB is designed with horizontal scalability in mind. It supports
sharding, which allows data to be distributed across multiple servers or clusters.
This makes it easy to scale out as the data volume grows, providing high
availability and redundancy.

High Performance: MongoDB's architecture is optimized for read and write
performance. Its ability to handle large volumes of unstructured data and perform
operations quickly makes it suitable for high-traffic applications. Indexing,
replication, and the in-memory storage engine further enhance performance.
Rich Query Language: MongoDB offers a powerful and flexible query language
that supports a wide range of operations, including filtering, sorting, and
aggregations. This makes it easy to perform complex queries and retrieve the
necessary data efficiently.

Ease of Use: MongoDB’s intuitive document model aligns closely with how
developers work with data in modern applications. The syntax is simple and
familiar to those who have experience with JavaScript, making it easier to learn
and implement.

Strong Community and Ecosystem: MongoDB has a large and active community,
along with extensive documentation and a wealth of third-party tools and
libraries. This vibrant ecosystem provides ample resources for learning and
troubleshooting, as well as numerous integrations with other technologies.

38

Disadvantages:

e Memory Usage: MongoDB can be memory-intensive, especially when handling
large volumes of data. It often requires more RAM to store indexes and frequently
accessed data in memory for faster access. This can lead to higher operational
costs for larger deployments.

e Data Redundancy: Due to its flexible schema, MongoDB often leads to data
redundancy. This denormalization can result in larger database sizes and potential
inconsistencies. Unlike relational databases, where normalization minimizes
redundancy, MongoDB requires careful schema design to manage this issue.

e Lack of ACID Transactions: While MongoDB has made strides in supporting
multi-document ACID (Atomicity, Consistency, Isolation, Durability)
transactions in recent versions, it historically lacked full ACID compliance. This
can be a drawback for applications requiring complex transactions across multiple
documents or collections.

e Complexity in Handling Relationships: MongoDB is less suited for applications
with complex relationships and joints between data entities. While it supports
embedded documents and references, handling relational data can be more
complex and less efficient compared to traditional relational databases.

e Limited Reporting and Analysis Tools: While MongoDB provides powerful
querying capabilities, it lacks the built-in reporting and analytical tools found in
some relational databases. This can necessitate additional tools or integrations for
comprehensive data analysis and reporting.

e Consistency Concerns: MongoDB’s default configuration favors eventual
consistency over immediate consistency. While this improves performance and
scalability, it can lead to scenarios where read operations may not immediately
reflect the most recent write operations. This behavior may not be suitable for
applications requiring strict data consistency.

In summary, MongoDB's flexibility, scalability, and rich feature set make it a
compelling choice for modern application development. Its ability to handle diverse data
types, combined with powerful query and aggregation capabilities, supports the creation

of sophisticated, high-performance applications. Whether used as the primary database

39

or as part of a broader data strategy, MongoDB provides the tools and flexibility needed

to manage and analyze large-scale data efficiently.

3.2.3 Firebase

Firebase is a comprehensive app development platform backed by Google,
designed to help developers build high-quality apps quickly and efficiently. It provides
a suite of cloud-based tools and services, enabling developers to focus more on creating
compelling user experiences and less on managing infrastructure. Firebase’s capabilities
span across various essential functions, including real-time databases, authentication,
cloud storage, and analytics. [1] Below is an illustration presenting the contrasting
traditional and Firebase application architectures.

Traditional

Firebase
E

Figure 3.4 Firebase [19]

Figure 3.9 presents contrast traditional and Firebase application architectures. In the
Traditional model, data flows from a mobile device to server racks, then to a cloud
service, and finally to a database. The Firebase model simplifies this process by directly
connecting client apps to Firebase, eliminating intermediate steps. This highlights

Firebase’s efficiency and simplicity for app development.

40

One of Firebase’s core features is the Realtime Database, a NoSQL cloud database
that stores data in JSON format and synchronizes it in real-time with all connected
clients. This is particularly useful for applications that require instant updates, such as
chat applications, collaborative tools, or live data feeds. Firebase also offers Firestore, a
more flexible and scalable database, which supports complex querying and hierarchical

data structures.

Authentication is another crucial service provided by Firebase. It simplifies the
process of managing user authentication and authorization. With Firebase
Authentication, developers can easily integrate various sign-in methods, including email
and password, phone authentication, and social logins such as Google, Facebook, and
Twitter. This service helps to enhance security while providing a smooth user

experience.

Firebase Cloud Storage enables developers to store and serve user-generated
content such as photos, videos, and other media files. It is built for robust, secure file
handling, and scales automatically as the app grows. Firebase also includes Cloud
Functions, which allows developers to run backend code in response to events triggered

by Firebase features or HTTPS requests.

Additionally, Firebase Analytics provides free, unlimited reporting on up to 500
distinct events. This helps developers understand user behavior, measure the impact of
changes, and make informed decisions based on real-time data. Coupled with Firebase’s
Crashlytics, developers can monitor and fix stability issues to improve app performance
and user satisfaction. Below is an illustration of backing up a project’s database and

media files.

41

Firebase: Firestore + Storage bucket back up

J y

(Short quide on how to back up your project database + media files)

=3
(=)
/7
5

Figure 3.5 Firebase storage [20]

Figure 3.10 presents for backing up a project’s database and media files using Firebase’s

Firestore and Storage bucket. It shows the process of transferring files to a secure

location, emphasizing the importance of data integrity and recovery. This is crucial for

preserving data in case of loss or damage. The image visually summarizes the process

of securing data in cloud services. It features the Firebase logo, Firestore and Storage

icons, and an illustration of file transfer.

Advantages:

Real-time Database: Firebase's real-time database allows for instantaneous data
synchronization across all clients. This is particularly advantageous for
applications requiring real-time updates, such as chat applications, live streaming
services, and collaborative tools. Changes made in the database are immediately
reflected on all connected clients.

Backend-as-a-Service (BaaS): Firebase provides a comprehensive suite of
backend services, including authentication, cloud storage, hosting, and cloud
functions. This all-in-one solution eliminates the need for managing backend
infrastructure, allowing developers to focus more on the front-end and application
logic.

Scalability: Firebase is built on Google's infrastructure, which means it can scale
seamlessly to handle large amounts of data and high traffic loads. This makes it

suitable for both small startups and large-scale enterprise applications.
42

e Cross-platform Support: Firebase offers extensive support for both web and
mobile platforms, including iOS, Android, and the web. This cross-platform
capability allows developers to use a single backend service to support multiple
client platforms, streamlining development and maintenance.

e Easy Integration and Use: Firebase's SDKs are designed to be easy to integrate
into applications. Its user-friendly console and detailed documentation further
simplify the development process. Features like Firebase Authentication provide
pre-built Ul components that can be easily customized.

e Security: Firebase provides robust security features, including Firebase
Authentication for user identity verification and Firebase Security Rules for
controlling data access. These tools help ensure that only authorized users can

access and manipulate data, enhancing the overall security of the application.

Disadvantages:

e Vendor Lock-in: One of the main drawbacks of using Firebase is the potential for
vendor lock-in. Since Firebase is a proprietary platform, migrating to another
service can be challenging and time-consuming. This dependency can be a
significant concern for businesses that require flexibility in their technology stack.

e Limited Querying Capabilities: While Firebase's real-time database is powerful,
it has limited querying capabilities compared to traditional SQL databases.
Complex queries involving multiple conditions or large datasets can be
cumbersome and inefficient. Developers may need to implement workarounds,
which can complicate the codebase.

e Pricing: Firebase offers a free tier with limited features, but costs can quickly
escalate as the application's user base and data storage needs grow. Services like
Firebase Realtime Database and Firebase Cloud Storage charge based on usage,
which can become expensive for high-traffic applications.

e Data Structure Constraints: Firebase's NoSQL data structure can be less intuitive

for developers accustomed to relational databases. Organizing data in a

43

hierarchical structure and managing complex relationships between data entities
can be challenging and may require a different approach to data modeling.

e Limited Server-side Logic: While Firebase provides cloud functions to run server-
side logic, there are limitations in terms of execution time, memory usage, and
available runtime environments. This can be restrictive for applications requiring
extensive backend processing or custom server-side operations.

e Offline Capabilities: Although Firebase supports offline data synchronization,
handling offline scenarios can be complex, especially for applications with
intricate data relationships and conflict resolution needs. Ensuring data
consistency and managing conflicts when the connection is restored can require

additional development effort.

In summary, Firebase offers a rich ecosystem of tools and services that cover all
aspects of app development, from backend infrastructure and user authentication to real-
time data synchronization and analytics. Its integration with other Google services and
extensive documentation makes it a powerful choice for both small and large-scale

applications.

3.2.4 JWT bearer

JWT (JSON Web Token) Bearer is a widely used standard for securing APIs and
transmitting information between parties as a JSON object. It is a compact, URL-safe
means of representing claims to be transferred between two parties. The claims ina JWT
are encoded as a JSON object that is used as the payload of a JSON Web Signature
(JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling
the claims to be digitally signed or integrity protected with a Message Authentication
Code (MAC) and/or encrypted.

One of the main advantages of JWT is its simplicity and compactness. A JWT
typically consists of three parts: a header, a payload, and a signature. The header contains

metadata about the token type and the signing algorithm. The payload contains the

44

claims, which are statements about an entity (typically, the user) and additional data. The

signature is used to verify the token's integrity and authenticity.

JWT Bearer tokens are commonly used for authorization. When a user logs in, a
server generates a JWT and sends it to the client. The client then includes this token in
the Authorization header of subsequent requests to access protected resources. The

server verifies the token's signature and claims to ensure the request is authenticated.

In essence, JWT Bearer tokens offer a secure and efficient way to handle user
authentication and authorization in modern web applications. Their stateless nature
eliminates the need for server-side session storage, reducing overhead and enhancing

scalability. Below is an illustration of the JWT Bearer Operating Model.

Client Authorisation Resource
Server Server

i i
I I
| |
: i

I I

Access Token Req. PN i

HTTP Token endpoint |

POST req. assertion = signed JWZJE:;&L;‘;;:‘:) + Validate JWT signature !

grant_type = jwt-hearer » Validate JWT !

= Verify user access to }

Access Token Response app |

I

Access token HTTP POSTresp. || |

scope r |

I I

3 |

Use APIs ! ‘
i
I - —
! |
I

Figure 3.6 JWT bearer operating model [21]

Figure 3.11 presents the process of obtaining and using an access token in a system with
separate client, authorization server, and resource server entities. JWT Bearer operating

model.

Advantages:

o Statelessness: JSON Web Tokens (JWT) enable stateless authentication, meaning
the server does not need to store session information. This reduces server load
and simplifies the scaling process. Each token contains all the necessary
information, so the server can verify the token without maintaining session data.

45

Compact and Portable: JWTs are compact and can be easily transmitted via
URLSs, POST parameters, or HTTP headers. Their JSON format makes them easy
to read and generate, ensuring seamless integration with web and mobile
applications.

Security: JWTs can be signed using a secret (HMAC) or a public/private key pair
(RSA or ECDSA). This ensures the token's integrity and authenticity, preventing
tampering. When properly implemented, JWTs provide a secure mechanism for
transmitting information between parties.

Versatile and Flexible: JWTs are versatile and can store various types of claims,
such as user roles and permissions. This makes them suitable for different
authentication scenarios, including user authentication, API authentication, and
single sign-on (SSO).

Cross-domain Authentication: JWTs are particularly useful for cross-domain
authentication. Since they do not require cookies, they can be easily used across
different domains, making them ideal for microservices architectures and
applications with multiple subdomains.

Reduced Server Load: Since JWTs are self-contained, the server only needs to
verify the token's signature to authenticate the user. This reduces the need for
frequent database queries and can significantly improve the performance of the
authentication system.

Disadvantages:

Security Risks: If not implemented correctly, JWTs can introduce security
vulnerabilities. For example, storing sensitive information in the payload without
proper encryption can expose it to potential attackers. Additionally, weak secret
keys or improper management of key rotation can compromise the security of the
tokens.

Token Size: While JWTSs are compact, they can still become relatively large if too
much information is stored in the payload. This can impact performance,
especially when used in HTTP headers or URL parameters, potentially leading to
longer load times and increased bandwidth usage.

No Automatic Revocation: One of the significant drawbacks of JWTs is the lack
of built-in token revocation mechanisms. Once a token is issued, it remains valid

46

until it expires. If a token is compromised, there is no straightforward way to
invalidate it immediately. This requires additional mechanisms, such as
maintaining a token blacklist, to manage revocation.

e Complexity in Managing Expiry: Managing token expiry and refresh mechanisms
can be complex. Short-lived tokens improve security but require implementing a
seamless refresh process to ensure a smooth user experience. Long-lived tokens
reduce the need for frequent refreshments but increase the risk if a token is
compromised.

e Overhead in Token Parsing: Every request containing a JWT requires the server
to parse and verify the token, which adds some computational overhead. While
this is generally minimal, it can become significant in high-traffic applications
where every request must be authenticated.

e Not Suitable for Large Payloads: JWTs are not ideal for storing large amounts of
data. The more information included in the payload, the larger the token becomes,
which can negatively affect performance and efficiency.

3.3 Conclusion

This chapter has provided a comprehensive view of the technologies, from
selecting appropriate technologies to designing system and planning development. These
decisions are critical for the project's success, ensuring the system will operate efficiently
and meet the defined requirements. Next, we will move on to the actual development
and deployment of the application, a crucial step to turn plans and designs into a

complete product.

47

CHAPTER 1V: APPLICATION DEVELOPMENT AND DEPLOYMENT

After outlining the architecture and technology, this chapter focuses on application
development and deployment. This is an important step in incorporating specific

requirements into the system.

4.1 Architectural design

4.1.1 Software architecture selection

The system consists of three main components:

o Client: executes on the user's web browser, where the interface is displayed for
user interaction with the system.
e Server: where requests from the Client are processed.

e Database: where data is stored.

For the basic functions of the system, the data flow will be as follows: the user
interacts with the system through the device screen, then the Client sends HTTP Requests
to the server. The server receives the request and processes it (may retrieve data from
the Database if needed), then returns the information to the Client in the form of HTTP
response. The Client receives the Response and extracts relevant information to generate
HTML/CSS pages to display to the user. Below is an illustration of the client-server

model in web communications.

Server-side
Systems Browser-Client

http request
Data- Ny Web <

User interface
store sever

http response |

Figure 4.1 Client server
48

Figure 4.1 presents the client-server model in web communications. It shows server-side
systems, including a data-store and a web server. The browser-client sends an HTTP
request to the server, which responds with data. This data is then displayed on the user

interface. This model is fundamental to understanding web technology.

4.1.2 Design overview

g4 Repository

Entities

Figure 4.2 Design overview

Figure 4.2 presents a flowchart of a software application’s data management system. It
includes five components: Database, Repository, Service, Controller, and Entities and
Data Transfer Object (DTO). The arrows show the data flow. The Database connects to
the Repository, which links to the Service and Entities. The Service connects to the
Controller and Entities. Entities link to DTO. This represents a layered architecture in

software design. Draw by draw.io

Express.js, a minimalist web application framework for Node.js, paired with
MongoDB, a NoSQL database, forms a powerful combination for building dynamic and
scalable web applications. Understanding their operational model sheds light on how
they work seamlessly together to handle requests, manage data, and deliver content

efficiently.

49

At the core of Express.js lies its middleware system, which intercepts and processes
HTTP requests. Middleware functions can perform tasks such as parsing request bodies,
authenticating users, and logging requests. This modular architecture allows developers
to structure their applications in a clear and organized manner, chaining middleware

functions to handle requests sequentially.

When a client sends a request to an Express.js server, the request is routed to the
appropriate route handler based on the URL and HTTP method. Route handlers are
functions that execute specific logic and generate a response to the client. Express.js
provides a simple and intuitive syntax for defining routes and handling various types of

requests, making it easy to develop RESTful APIs and web applications.

MongoDB serves as the data storage layer for Express.js applications, offering a
flexible and scalable solution for managing structured and unstructured data. MongoDB
stores data in JSON-like documents, making it well-suited for handling complex data
structures and nested relationships. Express.js applications can interact with MongoDB
using the official MongoDB Node.js driver or higher-level libraries like Mongoose,
which provide a schema-based approach for defining data models and performing CRUD

operations.

The operational model of Express.js - MongoDB revolves around asynchronous
programming and non-blocking 1/O, leveraging the event-driven architecture of Node.js
to handle concurrent requests efficiently. Express.js applications can handle a large
number of concurrent connections without blocking the event loop, ensuring optimal

performance and responsiveness.

Integration between Express.js and MongoDB is seamless, thanks to the
asynchronous nature of both technologies. Express.js route handlers can interact with
MongoDB databases asynchronously, performing database operations such as querying,

inserting, updating, and deleting data without blocking the execution of other requests.

50

This asynchronous model allows Express.js applications to handle complex data

operations without sacrificing performance or responsiveness.

4.1.3 Database design

Person_info
Notification [
{
fullName : String, .
{ dateOfBirth : Date, fullliame :String,
notificationContent :String, Sex : Humber, d’ft‘nﬂg”th : Date,
Unit title : String, addressCode : String, Sex ¢ Number,
status: Mumber, address : String, addressCeds : String,
posterfiame : String, nationality : String, address :String,
{ time: Date diseaseStatus : String nationality : String,
unitName: String, } diseaseStatus : String,
unitCode:String, } ¥
warninglevel: Number
totalCases:Number,
totalDesths: Number,
totalRecoverads: Number,
lastUpdateCases: Number, entry_declaration
1sstUpdsteDeaths Number, User
lastUpdsteRecovereds: Number, — {
type: String { object: String,
} phoneNumber : String. gate: String,

password : String vehicle : String,

type: Number, vehicleMumber : String,

status - Number, chairbumber : Number,

unitCode: String departureDay : Date,
unitDetail - String entryDate: Date,

3 departureCountry : String,
departureProvince : String,
destinationCountry : String,

move_declaration passingCountry: tring,
addressAfterQuarantine: String,
fever: Boolean,
vehicle : String, cough: Boolean,
vehicleNumber : String, Ezrg{;gﬂiolgggie .
chairNumber : Humber, Medical_info . sarefhroat: an.,
departureDay : Date, domestic_guest @
departureAddress : String, dial : Boolean,
arrivalAddress : String, fullName : String, { fffﬂﬂ_l'ﬂugé:}ﬂﬂleam
ismovingThroughTerritory : Boolean dateOfEirth : Dete ismovingThroughTerritory :Boolean, resh: Soolean,
nCovsignal : Boolean, Sex : Number, ! nCavsignal : Boolean, {’“E‘};esugf‘d'_ st e,
patientContact : Boolesn, addresscode + String, patientContact : Boolean, animalContact: Eoolean,
nCoVConPCountry : Boolean, address © String, nCoVConPCountry : Boolean, ’_‘C"‘l’fi?“t:ft;l?zﬂ}ezzi_
nCovConpPsignal : Boolean, nationality : String, nCovConPsignal : Boolean, i:”iziizgu:;;‘;’iim_‘3;231;“
declarationDate : Date, discaseStatus : String declarationDate : Date def‘;m_aﬁﬂnnate“: b :
) 3 i ¥

Figure 4.3 Database design diagram

Figure 4.3 presents for the database includes tables of users, notification, unit,

person_info, medical_info, admin_info, entry declaration, move_declaration,
domestic_guest.

User schema

Field Type Null

phoneNumber string not null

password string not null

type number not null

o1

status number not null

unitCode string not null

unitDetail string not null

Table 4.1 User schema
User schema: To store user account information.

e phoneNumber: stores user phone number information

e password: stores user password hash code information

e type: saves the user type. The 3 categories corresponding to values 0,1,2 are
residents, managers and medical staff

e status: saves the status of the account, 0 is active and 1 otherwise

e unitCode: stores the user's unit code

e unitDetail: stores the name of the user unit

Admin info schema

Field Type Null
fullName string not null
dateofBirth date not null
Sex bool not null
addressCode string not null
address string
nationality string not null
epidemicStatus number

Table 4.2 Admin_info schema

Admin_info schema: To store administrator information.

o fullName: To store the manager's name
e dateOfBirth: To store the manager's date of birth
52

Sex: To Store Gender Manager

addressCode: To store the manager address code

address: To store the manager's text address

nationality: To store the country name of the manager

epidemicStatus: To store the manager's status. 0 is normal and 1 is infected

Person info schema

Field Type Null
fullName string not null
dateOfBirth date not null
Sex bool not null
addressCode string not null

address string
nationality string not null
epidemicStatus number

Table 4.3 Person_info schema

Person_info schema: To store civilian information.

fullName: To store people's names

dateOfBirth: To store people's birthdays

Sex: To store the sex of the people

addressCode: To store people's address codes

address: To store people's text addresses

nationality: People's Country

53

e epidemicStatus: People's status, 0 is normal and 1 is infected

Medical info schema

Field Type Null
fullName string Not null
dateOfBirth date Not null
Sex bool Not null
addressCode String Not null
address String

nationality String Not null
epidemicStatus number

Table 4.4 Medical _info schema

Medical_info schema: To store medical staff information.

o fullName: Save the name of the medical staff
o dateOfBirth: Date of birth of medical staff

e Sex: Gender of Medical Staff

e addressCode: Medical staff address code

e address: Text address of medical staff

o nationality: Nationality of Medical Staff

e epidemicStatus: medical staff's medical condition, 0 is normal and 1 is infected

54

Domestic guest schema

Field Type Null
ismovingThroughTerritory bool not null
nCoVSignal bool not null
patientContact bool not null
nCoVConPCountry bool not null
nCoVConPSignal bool not null
declarationDate date not null

Table 4.5 Domestic_guest schema

Domestic_guest: To store general declaration information.

ismovingThroughTerritory: Do you pass through the epidemic area

nCoVSignal: whether there are signs of the epidemic

e patientContact: Have you been in contact with a sick person or are suspicious

e nCoVConPCountry: Have you been in contact with people from epidemic
countries

e nCoVConPSignal: having contact with people who show signs of epidemic

e declarationDate: declaration date

Move declaration schema

Type Null
Field yP
) string not null
vehicle
i string not null
vehicleNumber

55

i number not null
chairNumber
date not null
departureDay
string not null
departureAddress
. string not null
arrivalAddress
. . . bool not null
ismovingThroughTerriory
i bool not null
nCoVSignal
] bool not null
patientContact
bool not null
nCoVConPCountry
. bool not null
nCoVConPSignal
) date not null
declarationDate

Table 4.6 Move_declaration schema

Move_declaration schema: To store move declaration information.

e vehicle: Transportation

¢ vehicleNumber: Vehicle number

e chairNumber: Number of seats

e departureDay: Departure date

e departureAddress: Departure Address

o arrivalAddress: Destination Address

e ismovingThroughTerriory: Do you pass through a country or territory

e nCoVSignal: whether there are signs of the epidemic

e patientContact: having contact with a sick person or suspecting

e nCoVConPCountry: having contact with people from epidemic countries

e nCoVConPSignal: having contact with people who show signs of epidemic

56

e declarationDate: declaration date

Entry declaration schema

Type Null
Field yP
) string not null
object
string not null
gate
i string not null
vehicle
. string not null
vehicleNumber
. number not null
chairNumber
date not null
departureDay
date not null
entryDate
string not null
departureCountry
) string not null
departureProvince
L string not null
destinationCountry
) string not null
passingCountry
. string not null
addressafterQuarantine
bool not null
fever
bool not null
cough
bool not null
stuffy
bool not null
soreThroat
bool not null
nausea

57

) bool not null
diarrhea
bool not null
hemorrhage
bool not null
rash
. string not null
vaccineused
) bool not null
animalContact
bool not null
nCoVPContact
) . . string not null
isolationfacility
))] bool not null
negativeconfirmation
] date not null
declarationeDate

Table 4.7 Entry declaration schema

Entry_decalration schema: To store immigration declaration information.

object: Object

e (gate: Border Gate

e vehicle: vehicle entry

e vehicleNumber: Vehicle number

e chairNumber: Number of seats

e departureDay: Departure date

e entryDate: Date of Entry

e departureCountry: Country of departure

e departureProvince: Departure City

e destinationCountry: Country of Arrival

e passingCountry: What country has it traveled through
e addressafterQuarantine: Accommodation address after concentrated

quarantine

58

o fever: fever or not

e cough: cough or not

o stuffy: stuffy or not

e soreThroat: sore throat or not

e nausea: nausea or not

e diarrhea: diarrhea or not

e hemorrhage: hemorrhage or not

e rash: rash or not

e vaccineused: type of vaccine used

¢ animalContact: Have contact with wildlife

e nCoVPContact: Have you been in contact with people with symptoms of the
epidemic

e isolationfacility: isolation facility

e negativeconfirmation: negative confirmation

e declarationeDate: declaration date

Unit schema
Type Null
Field yp
) string not null
unitName
i string not null
unitCode
] number not null
waringLevel
number
totalCases
number
totalDeaths
number
totalRecovereds
number
lastUpdateCases

59

number
lastUpdateDeaths
number
lastUpdateRecovereds
string not null
type

Table 4.8 Unit Schema
Unit schema: To store local unit information. (From small to large units: ward -
district - city)
e unitName: Unit Name
e unitCode: Unit Code
e waringLevel: epidemic level, there are levels 0,1,2,3
o totalCases: total number of cases
o totalDeaths: Total Deaths
o totalRecovereds: total number of recoveries
o lastUpdateCases: number of new cases
e lastUpdateDeaths: new deaths
o lastUpdateRecovereds: number of new recoveries

e type: unit type, 3 values are w,d,p corresponding to ward, district, province

Notification schema

Field Type Null
notificationContent string not null
title string not null
status number not null
posterName string not null
time date not null

Notification schema: To store announcement/post information

Table 4.9 Notification schema

60

¢ notificationContent: The content of the announcement

e title: Announcement Title

e status: Post Status

e posterName: Name of the person who posted the announcement

e time: Announcement posting time

4.1.4 Description of the web development

Database: MongoDB

About MongoDB: MongoDB is a non-relational, open-source, document-based
database system designed to be flexible and easily scalable. It uses a JSON document
structure to store data, making application development flexible and fast. MongoDB
Cloud is a cloud service platform provided by MongoDB, providing easy and flexible
MongoDB database management solutions in the cloud environment, helping to reduce
the burden of system administration and increase availability and flexibility for

applications.

Installation Steps: Use mongodb cloud to be able to install a mongodb instance

through the steps:

e Create an account and log in at: mongodb.com

~ | @ Mongeoe: The Developer Dats X

€ > O @ %= coudmongodbcomA2

Clusters oAy - Toolbar

e Go to the mongodb cloud console and select Depployment > Database

Figure 4.4 MongoDB deploy — deployment database
61

e Create a new cluster database instance

reate Deployment | Cloud: Mc X

€ > € @M 5 doudmongodb.com/v2/66096b21261107672a5943d9#/clusters/edit?from=ctaClusterHeader * B Y » 9@

0 —

SERVERLESS >

Create New Serverless Instance

Serverless Dedicated Shared

For applicati 9, with variable traffic. Minimal configuration required.

Resources scale seamlessly to meet your workload and you pay only for the oparations you run. See pricing.
Serverless instances run on the latest MongoDB relsase with always-on security and backups. Learn more.

Cloud Provider & Region AWS, Singapore (ap-southeast-1)
aws O Google Cloud A Azure

* Recommendad region @ & Low carbon smissions ragion @

o == N.Virginia (us-east-) 4 @ B B Irelond fou-west) 4 @
v oo Youwil b e —————

$0.12/IM reads o wites storage, serveriess continuous bocksp, and doro uanster. see Cancel ‘ et atoacs
Pricing

Figure 4.5 MongoDB deploy — create cluster

e Copy connection string to connect from backend

lusters | Cloud: MongoDB Cle. X

€ 9 C M % doudmongodb.com/v2/66096b2f261107672a5943d9#/clusters/connect?clusterld=Cluster0 * B Y » 0@
Connect to ClusterO

(] @ ®

Set up connection security Choose @ connection method Connect

Connecting with MongoDB Driver

1. Select your driver and version

We recommend installing and using the latest drivar version.

Driver Version

Node.js v 55orlater -

2. Install your driver
Run the following on the command line

npm install mongodb ia
View MongoDB Node.js Driver installation instructions. @

3. Add your connection string into your application code

B View full code sample

godb+srv: /. 2001: <password>@clusterd.pdzgixr.mongodb.net/? ya

retryWrites=truebw=majors lustero

d> with the for the

Replace user. Fnsure any option params are

URL encoded® .

RESOURCES
Get started with the Node.js Driver @ Node.js Starter Sample App &
Access your Database Users @ Troubleshoot Connections #

Figure 4.6 MongoDB deploy — connect from backend

62

Browse collections - similar to tables in sgl. Each collection corresponds to 1
model in the nodejs backend.

v | @) MongeDs; The Developer Date. X | @ Data | Cloud: MongoDB Cloud X | =2 a X

€ > € @ =5 coudmongodb.com/v2

0 Atlas Fathanhsors.. ~ © Acco:

Overview * Create Detabese test.units

INSERT DOCUMENT

= Pl Options »

1-20 OF MANY

ERL AR AN

< EVioUs 1-20 of many results NEXT

Figure 4.7 MongoDB deploy successfully

Backend: NodeJS x ExpressJS

Node.js is an open-source execution environment built on a JavaScript platform for
developing easily scalable network applications. With Node.js, developers can use
JavaScript both server-side and client-side, creating a uniform development environment

for web applications.

Express.js is an extremely flexible and powerful Node.js web application
framework that is commonly used to build web applications and APIs. With Express.js,
building web applications becomes simpler by providing basic features such as routing,

middleware, and request and response management.

Node.js and Express.js are often used together to create efficient web applications

with extensive, modular, and easily scalable source code. With a large community and

63

diverse support, Node.js and Express.js have become a popular pair of technologies in

contemporary web application development.

Install the environment and backend code according to the steps:

Install node.js from nodejs.org

Install express.js: open a terminal or command prompt and enter the following
command

npm install express--save

Create a new expressjs app for the backend use the express command to generate
a new project skeleton, or you can manually create the necessary files

express pandemic-management-be

The structure of the node.js backend project will follow the following main
structure:

controllers
middleware
models
routes
gitignore

main.js

package-lock json

package.json
README.md

yam.lock

Figure 4.8 Backend folder structure

In which, the main file of the expressjs app is main.js

Configure MongoDB: Install MongoDB on your machine from the official

MongoDB website and configure the connection in your project.

Create new Mongoose model schemas: Use Mongoose to create schemas for your

data models: npm install mongoose --save

64

https://www.mongodb.com/try/download/community
https://www.mongodb.com/try/download/community

Create controllers: Define the processing logic for each route in controller files.
Create routes and configure APIs for Express: Define APl endpoints in route files
and link them with corresponding controllers.

Create middleware for authentication: Use packages

like passport or jsonwebtoken to build user authentication middleware.

Run the project: Use the node or nodemon command to start the server:

node app.js or nodemon app.js

Conclusion:

Using mongodb and nodejs, expressjs to build server APIs is simple structure and

write APIs quickly through the following steps: create a data model, create a controller

to process the APIs, create a route to route the APIs to the controllers and configure them

in the main.js

Frontend: HTML, CSS, JS:

Frontend uses basic technologies such as: html, css, and js to build user interfaces

and interactions vs. backend APIs to complete functions. Steps to build a frontend

project:

e Frontend project folder structure:

> cilivian

> manager

> medicalstaff
M favicon.ico
<> index.html
README.md

* register.html

Figure 4.9 Frontend folder structure
65

In which, the page folder contains the html files of the pages, the js folder contains
javascript files that handle interactions and operations, the css folder contains the css
files to create styles for the website, the api folder contains the js files that use fetch to
call the APIs from the backend, Finally, the asset folder contains the fonts and images
needed for the interface.

Flows deploy backend to aptible cloud

Using the Deploy Code tool in the Aptible Dashboard, you can deploy the Express
Template. The tool will guide you through the following: [7]

eve M~ « [}

Aptible vasoc

Aptible

Deploy your App

Aptible is the No Infrastructure Platform as a €
to deploy in seconds, scale infinitely, and forget about infrastructure.

Deploy with Git Push —

Choose what should Aptible build next

a8
Figure 4.10 Deploy to Aptible with git push

66

Step 01: Deploy with Git Push.

evce M < 1

Aptible : Deployments

Add your SSH Key

Add your SSH Key to push code into Aptible

Step 1. Copy Public SSH Key
opy your public key to the clipboard. If you're not sure what your public key following

Step 2. Paste Public SSH Key

Save Key

Figure 4.11 Deploy to Aptible — add ssh key
Step 02: Add an SSH key.

Step 03: Environment Setup.

ese M < (

Aptible X Deployments

Name your Environment

An Aptible environment contains your app along with any required databases

Stack
us-shared-east-1(North Virginia)
Environment Name

dashboard

How It Works

Figure 4.12 Deploy to Aptible - environment

Select stack to deploy resources. This will determine what region resources are

deployed to. Then, name the environment resources will be grouped into.

67

Step 04: Prepare the template

eve @M < 1) app.aptible.com

ik Aptible Dashboard Deployments Manage SSH Keys CRE Test Org Settings Logout

Push your code to Aptible
We will look for a Dockerfile or generate one for you to deploy your app.

Deploy Custom Code or Starter Template
Launch your existing app with Custom Code, or learn how Aptible works with a Starter Template.

Express v4 Template]

_2[

What's inside this template? View Source Code on GitHub

Clone Template

Select Template

Add Aptible's Git Server

ble gitGbeta.aptible.com:gab-test/gab-test.git

Push your code to our scan branch

Figure 4.13 Deploy to Aptible — prepare the template
Select Express Template for deployment and follow command-line instructions.

Step 05: Fill environment variables and deploy

eve (I < (app.aptible.com +
Aptible Z Deployments
dashboard-redis DATABASE_URL
© brimreine
Environment Variables
4d any additional required variables, such as API keys, KNOWN_HOSTS setting, etc. Ea

at: ENV VAR=VALUE

STRIPE_SECRET_KEY=52EBEEBDD5D6128B7

Services and Commands

separate serv and comm J mat: NAME OMM
e (\

Figure 4.14 Deploy to Aptible - environment variables

68

Aptible will automatically fill this template’s required databases, services, and
app’s configuration with environment variable keys to fill with values. Once complete,

save and deploy the code.

Step 06: View logs in real time

eve [§ +
Aptible Deployments
Deploying your Code
Deployment is in prog
@ Dashboard
¥) http er t
@5 yat10:00AM | if main < c6053>
 Initial configuration 0: 10¢ s QUEUED
\ Database provision dashboard-redis (0. s QUEUED
v App deployment 0.1 s QUEUED
How to Deploy Changes
Commit changes to your local git repo and push to the Aptibie git serve

Figure 4.15 Deploy to Aptible - view logs in real time

Step 07: Expose app to the internet

Aptible ! Deployments

Deployed your Code

@Dashboard
Pending HTTP §

 Deployedtoday at1005AM | main - c6053b

Vv Initial configuration 10100 3s DONE
v Database provision dashboard-redis 30m DONE
v App deployment 0; 45s DONE

Which service needs an Endpoint?

cmds=cron

L
Figure 4.16 Deploy to Aptible - expose app

69

Now that code is deployed, it is time to expose the app to the internet. Select the
service that needs an endpoint, and Aptible will automatically provision a managed

endpoint.

Step 08: View deployed app

@ e (I q app-52737.on-aptible.com (+

Congrats on deploying to Aptible!

Feel free to modify or remove this! Vist once you have passed your
DATABASE_URL to view an example db connection

Figure 4.17 Deploy to Aptible successfully

So, we have successfully deploy backend with Aptible at url https://app-74434.on-

aptible.com/

70

4.1.5 Built-in APIs

provides business APIs:

Have built a website system for manager,

medical staff and

civilian, 1 server

* pheneNumber: so dien thoai { "
* message: "Signup successful”,
L " o 2 * password: mat khau .
POST /apifsignup Bang ky tai khoan . . . * userld: result._id,
* type: chon chuc vu: 0- nguoi dan, 1- nhan vien y te, 2- admin "
* unitCode: ma unicode cua don vi .
“ i
{
* token,
* pheneNumber: so dien thoai * type,
POST /apiflogin Déng nhap tai khoan * unitCode,
* password: mat khau * UnitDetail
* 1 body * userld: loadedUser._id.toString(),
1
* fullName: Ho va tén (
* dateOfBirth: Ngay sinh ’ .
s message: "Successful registration
A R * Sex: Gidi tinh . 3
. Thém théng tin ca Y N . information”,
POST Japi/Person N i * addressCode: M3 dia chicu tra .
nhan cho ngudi dan e . * Jink: process.env.SERVER_URL +
* address: Dia chi mirc nhé hon phuéng -
L . "/personinfo/getperson”,
* nationality: Qu&c tich o
* diseaseStatus: Trang thai (FO, F1, F2) khong bj gi thi khdng can cap nhat
)
* fullName: Ho va tén {
* dateOfBirth: Ngay sinh))
o * message: "Update infomation
Cap nhat théng tin ¢4 * Sex: Gidi tinh fulr
4p nhat thong tin ca successful”,
PUT /api/editPerson p} g N * addressCode: M3 dia chicu trd N
nhan cho nguoi dan . L N N * link: process.env.SERVER_URL +
* address: Dia chi mirc nhé hon phwéng -
L P "/personinfo/getperson”,
* nationality: Quéc tich Y
* diseaseStatus: Trang thai (FO, F1, F2) khdng bj gi thi khdng can c&p nhat
)
{
message: "fetching user info successfully”,
data: {
userld,
phoneNumber,
fullName,
) - Léiy théng tin cho dateOfBirth,
GET fapi/getPerson nguro dan sex,
addressCode,
address,
nationality,
diseaseStatus,
L
1
{
DELETE sleteParson Xba thong tin ngurdri un--\luu(nu Delete infomation
dan successful"
_ _ _ _)
{
message: "Successfully",
data:
{
L&y vé danh séch tai userld,
GET Japi/getListMedical khodan nhén viény t& | { token :"String"} phoneNumber,
can duyét unitCode,
unitDetail,
e
L
}
{
message: "Successfully",
data: [
{
L&y vé danh séch tai userld,
GET /api/getListAdmin khoan quan Iy can | { token :"String"} phoneNumber,
duyét unitCode,
unitDetail,
bieee
L
1
{
PUT /api/accountbrowsing Duyét tai khoan { token :"String"} message: "Successfully”,
t

Figure 4.18 Build in APIs (1)

71

Thém théng tin ca

* fullName: Ho va tén /String

* dateOfBirth: Ngay sinh /Date

* Sex: Gidi tinh /String

* addressCode: M3 dja chi cu trd /String

* message: "Successful registration
information",

POST i/admit
Japifadmin nhan cho admin * address: Dia chi mirc nhd hon phung [String * link: process.env.SERVER_URL +
* natienality: Quéc tich /String "fadmininfo/getadmin”,
* diseaseStatus: Trang thai (FO, F1, F2) khong bi gi thi khéng can cap nhat *}
/String
3
* fullName: Ho va tén .
* dateOfBirth: Ngay sinh .) i
o * message: "Update infomation
Cép nhét théng tin c& * Sex: Gidi tinh successful®,
pUT JapifeditAdmin P 8 * addressCode: M3 dia chi cur tri oSSt
nhén cho admin o A *Jink: process.env.SERVER_URL +
* address: Bja chi mirc nho hon phudng L.)
s e "/admininfo/getadmin”,
* natienality: Qudc tich "
* diseaseStatus: Trang thai (FO, F1, F2) khéng bi gi thi khong c¢an c&p nhat
¥}
{
message: "fetching user info successfully”,
data: {
userld,
phoneNumber,
fullName,
L&y théng tin cho dateOfBirth,
GET /api/getAdmin v thone
admin Sex,
addressCode,
address,
nationality,
diseaseStatus,
h
}
{
: "Delete infe i
DELETE /api/delePerson X6a théng tin admin message: Delete infemation
successful
I3
{
message: "fetching user info successfully",
data: {
userld,
phoneNumber,
fullName,
L&y théng tin cho dateOfBirth,
GET Japi/getMedical v thongtin ch
nhén viény té Sex,
addressCode,
address,
nationality,
diseaseStatus,
b
}
{
Xba thong tin ngudi message: "Delete infomation
DELETE Japi/deleteMedical 8 Hn ne 8
dan successful”
}
* fullName: Ho va tén {
* dateOfBirth: Ngay sinh N . .
N N L I * message: "Successful registration
Thém théng tin ca * Sex: Giéi tinh . e
. - N A ia w4 v . information”,
POST Japi/Medical nhan cho nhén viény * addressCode: M3 dia chi cw trd .
. . L N N * link: process.env.SERVER_URL +
& * address: Dia chi mirc nhd hon phuong N
L o "/personinfo/getperson”,
* nationality: Quéc tich "
* diseaseStatus: Trang thai (FO, F1, F2) khang bi gi thi khang can cap nhat
*}
* fullName: Ho va tén (
* dateOfBirth: Ngay sinh .) i
a P A * message: "Update infomation
Cgp nhat théng tin ca * Sex: Gi6i tinh successful"
PUT /api/editMedical nhan cho nhan viény * addressCode: M3 dia chi cw trd !

@&

* address: Dia chi mirc nhd hon phuing

* nationality: Quéc tich

* diseaseStatus: Trang thai (FO, F1, F2) khéng bi gi thi khdng can cap nhat
*}

*link: process.env.SERVER_URL +
"fpersoninfo/getperson”,

}

Figure 4.19 Build in APIs (2)

72

Tao 1 ban khai y t&

* ismovingThroughTerritory: C6 di qua viing bénh khéng /Boolean
* nCoVSignal: C6 diu hiéu mic Covid khéng /Boclean
* patientContact: C6 ti€p xic v&i ngudi bénh hode nghi ngd khéng

* message: "Update a domestic
guests successfully”,

POST /api/adddomesticguests toan dén { token :" /Bo:laan o o + link: process.env.SERVER_URL +
nCoVConPCountry: C9 tiép xuc vdi ngudi tlr nwde c¢d Covid khdng " N N "
‘/domesticguests/getdomesticguests’
/Boolean .
* nCoVConPSignal: C6 tiép xiic véi ngudti cé d3u hidu mic nCoV /Boolean }
*
{
message: "Get infomation domestic
guests successful”,
data: {
userld,
ismovingThroughTerritory,
GET /api/getdomesticquest Lay ban khaiy t& | { token :"String"} nCoVSignal,
* patientContact
* nCeVConPCountry
= nCoVConPSignal
declarationDate,
b
'
{
DELETE | /api/deletedomesticquest X6a ba‘n khAal Ve { token :"String"} message: DEIEtE,‘mFUmahm domestic
toan dén guests successful”,
i
T
* message: "Get infomation entry
declaration successful”,
*data: {
* userld,
= object,
* gate,
-
* vehicleNumber,
= chairNumber,
* departureDay,
= entryDate,
* departureCountry,
= departureCity,
GET Japi/getentrydeclaration | oY PENKNAINNAD | L String) N destinationCountry,
canh = passingCountry,
* addressAfterQuarantine,
= fever,
* cough,
- stuffy,
* soreThroat,
= nausea,
* diarrhea,
= hemorrhage,
* rash,
* vaccinesUsed,
* animalContact,
- nCoVPContact,
* isolationFacility,
- . 5
{
DELETE |/api/deleteentrydeclaratio xéa ba",kha' nhép { token :"String"} " message: Delgfg infomation entry
canh declaration successful”,
")
{
* vehicle: Phuong tign /String
* vehicleNumber: $5 higu phuong tién /String
* chairNumber: 58 gh& /Number
* departureDay: Ngay kh&i hanh /Date {
* departureAddress: Dia chi xust phat /String * message: "Update a move
Tao 1 ban khai y t& * arrivalAddress: Dia c! &n fStrin, delcaration successfully”,
POST | /api/addmovedeclaration | "y a oa; :‘i‘/ia { token "String"} * ismovingThroughTerritory: cfa di cghuyé’n qua quBc gia 4nh thd nao * link: pmcess.:nv.sskvsRNRH
/Boolean */movedeclaration/getmovedeclaration”
* nCoVsignal: C d&u hidu mic nCoV /Boolean * }
* patientContact: C6 ti€p xlc véi ngudi bénh hoac nghi ngé /Boolean
* nCoVConPCountry: C3 ti€p xiic v&i ngudi tir nwdc cé nCoV /Baolean
* nCoVConPSignal: C& tidp xtic v&i ngudi cé diu hidéu mic nCoV /Boolean
-
{
* message: "Get infomation entry
declaration successful”,
*data: {
* userld,
vehicle,
vehicleNumber,
chairNumber,
. o departureDay,
GET | /api/germovedeclaration | 5 PN KRl VI Al | f o ngiringy departorenddress,

chuyén néi dia

arrivalAddress,
ismovingThroughTerritory,

Figure 4.20 Build in APIs (3)

73

nCoVSignal,
patientContact,
nCoVConPCountry,
nCoVConPSignal,
* declarationDate,

b

"1

i

POST

DELETE

fapi/addentrydeclaration

api/deletemovedeclaratio

Tao 1 ban khai y té
nhap cénh

X6a ban khai y t& di
chuyén ni dia

{ token :"String"}

{ token :"String"}

* object: D8i twong(nwée ngoai hay Vn, ...) /String

* gate: Cira khdu /String

* vehicle: Phurong tién /String

* vehicleNumber: S8 hiéu phuong tién /String

* chairNumber: S5 gh& /Number

* departureDay: Ngay khéi hanh /Date

* entryDate: Ngay nhap canh /Date

* departureCountry: Qudc gia kh&i hanh fString

* departureCity: Thanh phd khéi hanh /String

* destinationCountry: Quéc gia cin d&n /String

* passingCountry: D3 di qua quéc gia ndo /String

* addressAfterQuarantine: Dia chi lwu tri sau céch ly tap trung /String
* fever: Ho /Boolean

* cough: S5t /Boolean

* stuffy: Khé the /Boolean

* soreThroat: Dau hong /Boolean

* nausea: nén /Boolean

* diarrhea: Tiéu chay /Boolean

* hemorrhage: Xust huy&t /Boolean

* rash: N&i ban /Boolean

* vaccinesUsed: Loai Vacxin d3 si¥ dung /String

* animalContact: Cé ti€p xic v&i déng vit hay co s& giét m& /Boolean
* nCoVPContact: C6 tiép xic véi ngudi méc nCaV /Boolean
* isolationFacility: Co s& cch ly /String

* negativeConfirmation: xéc nh&n &m tinh

=1

Figure 4.21 Build in APIs (4)

Build storage for media: photos, etc. using firebase storage.

74

{

= message: "Update a domestic
entry declaration successfully”,

= link: process.env.SERVER_URL +

"/entrydeclaration/getmovedeclaration”

=}

* message: "Delete infomation move

declaration successful”,

*}

4.2 System interface design

Deploy with Netlify at url https://pandemic-management.netlify.app/

Login

bang nhap
So dién thoai
Nhap s0 dién thoai

9 ANTI COVID
Mat khau

Nhap mét khau

Pang ky_tai khodn Bang nhap

Figure 4.22 Login interface

The login home page is the first page visitors see when accessing the
epidemiological management website. This is where users use their existing account to

log in to use the system or, if they do not have an account, they need to register to use it.

75

Reqister

DPang ky tai khoan:
Sa dién thoai

Nhap sb dién thoai
Mat khau

Nhap mat khau
Nhap lai mat khau

Nhap lai mat khéu

Q ANTI COVID Chirc vu:

® Khéng Nhan vién y té Quan ly
Pia phuong:

Tinh, thanh pha: Quan, huyén: ® Xa, phuéng:
v v v

Tai liéu/chirng chi
‘ Chon tép | Khdng co tép nao dugc chon

e

]

Figure 4.23 Register interface

Users can register user accounts for three types of users according to usage needs:

Civilian, Medical Staff, Administrators.

Civilian: For this user, you need to use a phone number and password to
register. Click to select the "None" function button for Civilian users. Select
specific address information in order from Province, City - District -
Commune, Ward. The request will be automatically approved by the system
and can be used immediately.

Medical Staff: For this user, you need to use a phone number and password
to register. Click to select the "Medical Staff" function button for Medical
Staff users. Select specific working units by Province, City - District -

Commune, Ward. Upload relevant documents and certificates used to

76

authenticate your identity. After clicking register, the system will
automatically record the results and need to wait for approval from the
system administrator before you can use it.

e Administrators: For this user, you need to use a phone number and password
to register. Click to select the " Administrator" function button for
Administrators users. Select specific working units by Province, City -
District - Commune, Ward. Upload relevant documents and certificates used
to authenticate your identity. After pressing register, the system will
automatically record the results and need to wait for approval from a system

administrator with higher authority before you can use it.

Account approval

24 |VietNam A Admin v

. Tai khoan ctia NVYT b <
A Trang chl

. STT S& dién thoal M3 don vi Théng tin don vi
Théng tin

1 0999999992 |14 Tinh Son La

Duyét tai khodn

@ Tinh hinh dich Théng bao
M Ban db dich Ban c6 muén duyét tai khodn 0999999992 khong?

2 Biéu d6 dich

Hién thi ban ghi tir 1 dén 1 100 v banghitrang < >

Figure 4.24 Account approval interface

Use the Administrator account to track account approval requests from medical

staff and administrators.

77

Double-click on the user you want to approve. Select close to cancel the operation,
select the document icon to check the certificate, select approve to approve the account,

select reject to reject the request.

Personal information

& |Phudng Thanh Trl, Quan Hoang Mai, Thanh ph& Ha Ni A v
T o q 2 a
L) LG Thong tin ca nhan X
B8 Théng tin
Ho va tén: Ngay sinh:
To khaiy té dd fmm yyyy n
@ Tinh hinh dich Giéi tinh Quaéc tich: Théng tin djch t&(F0, F1, F2):
M Ban db dich ®) Nam Nir Khéng FO F1 F2 (@ Khéng
I Bidu do dich Tinh/Thanh phé: Quén/Huyén: Phuémng/xa:

? Dich bénh méi

Dija chi cy thé:

Figure 4.25 Personal information interface

Users need to fill in personal information including Full name, date of birth, gender,
nationality, click on epidemiological information FO, F1, F2, None. Fill in address
information and note the specific address. Then press the "Update information” button
for the system to automatically record.

Filling in personal information completely and accurately is very important. It
makes statistical work and information verification easy, saving time for medical staff
and senior managers.

78

Announcement/Post

& |Phudng Thanh Tri, Quan Hoang Mai, Thanh phd Ha N&i A Nguyén Manh Thanh v
Chen théng bdo tir: | Tin tir ngudi dan ~ + Béngbaimoi (s
#A Trang chli S —
v Tin tif ngudi d3
B Théng tin Q xa Bo Son, Huyén Luc Nam, Tinh Bic Giang
Tin tlr NVYT
Torkhai y o8 Tin tir quan li
@ Tinh hinh dich Tin clia ban thin 1vao dia ban bi phong tda. Can chinh quyén, co quan nha nudc hd trg vat dung ca nhan, luang thuc, thuc pham,
M Bin 3 dich E%??q_?;fiﬁ!nh o Xa Béo Son, Huyén Luc Nam, Tinh Bac Giang
20:1C 105/202
I~ Biéu dd dich L
' Khan cap
? Dich bénh méi Can hé trg luang thuc va trang biy té, ..
Hién thi ban ghi tir 1 dén 2 100 v | banghirang < >

Figure 4.26 Announcement/Post interface

Displays announcements and posts from medical staff, managers and residents.
Allows you to review your posts. An announcement, post includes a title and content.

After the system records post requests from Civilian users, Medical Staff users, and
Administrators users, the administrator account needs to approve them before the users
can view them.

79

Approve announcement/post

2o |VietNam A Admin v
. Chonthdng béo tir: | Tin can duyét v J—— P
A& Trang chi
& Thongtin Nguyen Manh Thanh Q Phuong Thanh Tri, Quén Hoing Mai, Thanh ph Ha Noi

14:18 13/06/2024

B Duyét tai khodn Yéu cau

@ Tinh hinh dich Yéu cau chinh quyén cac cp nhanh chéng dua ra cac khuyén céo, luu y phong tranh sau khi xuat hién dich bénh méi "Dau mua khi”

N Bén da dich Tir chdi

|~ Biéu do dich

Hién thi ban ghi tir 1 dén 1 100 v banghitrang < >

Figure 4.27 Approve announcement/post interface

Use the Administrator account to approve announcements/post from Civilian users,

Medical Staff users and Administrators users.

Check the information and authenticity of the announcement/post before clicking
approve to agree to post the announcement/post or click decline to refuse to approve the

announcement/post.

80

General declaration

& |Phudng Thanh Tri, Quan Hoang Mai, Thanh ph& Ha Noi a Nguyén Manh Thanh v

Chon logi khai b&o: Khal bao toan dan v
Trangcht on o

& Théngtin

Khai bao toan dan x

B Tokhaiyté

C6 di qua vung bénh khéng:

@ Tinh hinh dich ® Khéng c6

B B ok €6 diu hiéu mac Covid khng:
k2 Biéu dd dich ® Khéng co

C6 tiép xtic véi ngudi bénh hodc nghi ngd khong:

® Khéng c6

? Dich b&nh mét
Cé ti€p xuc v&i ngudi tir nudc c6 Covid khong:
® xhang c6

C6 ti€p xuc vé&i ngudi cé ddu hiéu mac nCoV:

®) Khéng co

Figure 4.28 General declaration interface

Use the “yes” or “no” quick choice form. The quick declaration list helps medical
staff quickly compile data on individuals at risk of infection.

General declaration list

L | Thanh phd Ha Nai a undefined v
Khal bao toan dan v Tim theo sb dién thoa =
Trang chii
STT Hovatén Ngay sinh 56 dién thoai Quéc tich Thubc don vi quan i
& Théng tin
1 Nguyén Manh Thanh 01/02/2001 9876543210 Viét Nam Phudng Thanh Tri, Quén Heang
B Khaibaoy €
@ Tinh hinh dich
M Ban db dich
I Biéu dd dich
? Dich bénh méi
S | Thanh phé Ha N&i A undefined v
Khal bao toan dan v Tim theo s& dién thoal o
A Trang chi
C6 i qua viing bénh €6 dii diu higu méc covid Cé tiép xiic véi nguéi bénh,nghi ngd €4 tiép xiic v ngurdi tir nubc ¢ Covid khéng €6 tidp xiic véi ngudi c6 ddu higu mic nCoV
8 Théng tin
(-] a (-] o a

B Khaibaoy té

@ Tinh hinh dich
M Bén db dich
I Biéu dd dich

? Dich bénh mai

Figure 4.29 General declaration list interface

Medical staff compile statistics on users at risk of epidemic and contact them

according to the information on the form.

81

After the system records the results of people's declarations, medical staff can
check the declarations within the scope of management. Accurate statistics and data help

update epidemic information in the region.

Entry declaration

& |Phudng Thanh Trl, Quin Hoang Mai, Thanh phé Ha NI A Nguy&n Manh Thanh v

Chonlosi khaibdo: Knaibsomdpcinn v

Khai bdo nhap canh X

D6 tugng: Cira khdu
S5 hiéu phuong tién: 6 ghé:
Ngay khét hanh: Ngay nhip canh:

P o am s
Quékc gla khét hanh: Thanh phé khét hanh: Québc gla can dén:
D4 di qua quéc gia ndo: Bla chi luu trti sau cich ly tp trung:
Ho: s6t Khé thés Pau hong:

3 & s

Nén: Tidu chiy: Xudt huyét: NGi ban;
€6 tiip xtic vl 3dng vt hay co s& giét mé: C6 tip xic véi ngudt mic nCoV:

® ooy O G ® wong O ct

Loal Vacxin 83 sir dung: Xac nh3n am tinh:

Cosdcichly:

Figure 4.30 Entry declaration interface

Civilian users declare entry information according to the form available on the

form.

Entry declaration list

& |Thanh phe Ha Ngi A ADM Ha Noi v

Wnsibdorhipcinn v heo s G o =
IwOssuckchlytpTung Lobivaomn 08 5 ung casteienly Ho sit mams | Dauhang Hen Thuchdy | Nulthayt | NSiban COuépicvoh dongvithey cosbgMtm COuép et nguts mcnCo | XCrhdn dm o

L] o L] o L] o L] o o L] o

Figure 4.31 Entry declaration list interface

Similar to the declaration above.

82

Move declaration

; | Phung Thanh Tri, Qun Hoang Mai, Thanh phé Ha Ngi A Nguy&n Manh Thanh v
S — Chonloai khaibdo: Khaibdo dichuén v
& Thangtin - . 2
Khai béo di chuyén x

B Tokhaiyté

Phuong tign 56 higu phuong tign:
@ Tinh hinh dich

Huyndal Santafa s9A81803
Ll s6ghe: Nady khdi hanh:
k2 Biéu 00 dich 7 10/86/202¢ a
? Dich bénh mai Dia chi xudt phét: Bia chi dén:

HNG Quing Nist

16 di chuyén qua quéc gia lanh thd nao:

® Knoag @

€6 ddu higu méc nCoV:

Khong @) Co

6 tiép xiic véi nguii bénh hoac nghi ngér:

® Kning [

€6 iép xtic véi ngudl tir nurdc €6 nCoV:

® Kning @

€6 iép xiic véi ngu ¢6 d3u hiéu mac nCoV:

® Knong @

Figure 4.32 Move declaration interface
Similar to the declaration above.

Move declaration list

Khaibiodicuydn v

2
Trengchil
ST Hovatén Nody sinh S6 dign thoai Quéctich Thuc 8on vi quén i Phuong tién 56 hiéu phu
& Thong tin
hénh 1702201 9 Viét Nam Phuting Thanh Tri, Quén Hoang Mai, Thanh phd Ha Nox Huyndai Santafe 99A44803

B Khaibioyté

@ Tinh hinh dich

M Ban 00 dich

I Biéu dd dich

? Dich bénh mdi

Khai bio di chuyén v -

Trangchi

Bia chi yust phét Bia chil gén 06 di chuyén qua qude gia kanh thé ndo Ch di g4 e covid 6 tiép i nghingd COtépxic i kh (C6 tép xtic v ngul f ddu hiku méc nCov

8 Thngtin

Ha N Quing Ninh 0 (-] 0]
B Khai bdoy

@ Tinh hinh dich
W Bin 6% dich
b Biéu db dich

7 Dich bénh mdi

Figure 4.33 Move declaration list interface

Similar to the declaration above.

83

Situation reports pandemic

| Tinh Bac Giang A Nguyén Van Hiéu v
Trong nudic Tim theo én dorn v « 2
A Trang chli 9 ' ~
ST Téndonvi Ma don vi Miic béo déng Tong s6 ca nhiém Tong 6 ca tif vong Téng s6 ca phu
B Théng tin
1 Thanh phd Ha Néi 11 3 141 63
B Khaibdo yté
2 TinhHaGiang |2 0 0 0
@ Tinh hinh dich
3 TinhSonla [14] 0 0 0
Wi Ban do dich
4 Tinh Hoa Binh 17| 0 0 0
I Biéu db dich
5 Tinh Hai Duong |30| 0 0 0
‘? Dich bénh mdi
6 TinhThéi Binh |34| 0 0 0
: 7 Tinh Nam Binh |36] 3 90 22
8 TinhNinh Binh |37] 0 0 0
) 9 TinhHaTinh |42| 1 5 0
10 Tinh Quing Nam |49] 0 0 0
11 Tinh Khanh Héa |56| 0 0 0
Hién thi ban ghi tir 1 dén 63 100~ | bnghirang ¢ >

Figure 4.34 Situation reports pandemic interface (1)

The city unit displays the epidemic situation. Including unit code, alert level, total
number of cases, total number of deaths, total number of recoveries, number of new

cases, number of new deaths, number of new recoveries.

L |Tinh Bic Giang a Nguyén Van Hiéu v
. Trong nudc Tim theo tén don vi « 2
A Trang chil 9 N
| ST Tendonvi Ma don vi Mir bo dgng Téng s6 ca nhiém Téng s6 ca térvong Téng s6 ca pht
@& Théng tin
] 1 Thanh phd Ha N&i 1 3 141 63
B Khaibdoyté
] 2 TinhHa Giang 12| 0 0
@ Tinh hinh dich Théng bao
| 3 TinhSonla |12 0 0
M Ban do dich Ban c6 mudn xem tinh hinh dich cac don vi con cda
] 4 Tinh Hoa Binh 111 don vi Thanh phé Ha Noi khéng?) 0

l~ Biéu d6 dich

j 5 Tinh Hai Duong 13C Dong m Biéu db thing ke 0 0
? Dich bénh méi

] 6 Tinh Thai Binh 134| 0 0 0
J 7 Tinh Nam Binh 136 3 0 2
J 8 TinhNinh Binh 137| 0 0 0
J 9 TinhHa Tinh 142| 1 5 0
| 10 Tinh Quing Nam 149] 0 0 0
| 11 Tinh Khanh Hoa 156/ 0 0 0
Hién thi ban ghi tir 1 dén 63 100 v | binghitrang ¢ >

Figure 4.35 Situation reports pandemic interface (2)

84

Double-click on the province/city unit to select to view district-level Pandemic
information. Similarly, double-click on the district-level unit to see the epidemic in the

commune/ward.

Update situation pandemic

Cap nhat tinh hinh don Vi X

Théng tin don vi:

Xa Yén Vién, Huyén Gia Lam, Thanh phé Ha Noi

S6 ca mac méi: S6 ca tir vong méi: S6 ca phuc hdi méi:

Ngay:(dé tréng uong ng ngay hién tai)

dd/mm/yyyy

Figure 4.36 Update situation pandemic interface

To be able to update the Pandemic situation, you need to use a Commune/Ward
administrator account. Including the number of new cases, the number of new deaths
and the number of new recoveries. If you do not enter a date, the system will
automatically select the current date to retrieve data. After clicking update, the system

will automatically add District units - Province/City units.

85

Pandemic map

2 |Xa Yén Vién, Huyén Gia Lam, Thanh phd Ha Noi Aa undefined v
- i = w7 T ;
+ A Eé‘ : i Nuf(gl:m T:ém Quyén, L Kw':;"'m ‘l";‘m
A Trang chd Burma z ;‘»Eil\ﬂic;
o ase: Mbu Danh Hong Kong
0 L Bac Hal A
& Théng tin Myanmar 04 =" 2 L
o
((Burmg)mmm Tram Giang
Duyét tai khodn eondloti ong G20
o
e Hai Khdu
@ Tinh hinh dich O™
o HALNAM
M Ban db dich R TamA
g ¥
I Biéu do dich
Pathein
o i ddo.
ing S
Bag
Bién Dong Angeles
%
Manila
®
Lungsod ng
ll'{-ll““:l“'\“ﬂﬁ Xitm&itp Ba(ionq“
diaguny
Pattays iy
b Mindh
Campuchia g T
o A g Philippine
HIRT KHAN Phnsm Pénh .
Bién ry l ana
fam. o I Noilo
- udgde ‘
2 g i
. S
5 u

RANONG!
Vinh Thi Lan

Figure 4.37 Pandemic map interface (1)

The Pandemic map takes data directly from the epidemic situation function. Allows

users to view areas on the map and the epidemic situation of each area.

In particular, the Pandemic situation of the regions is expressed according to

indicators such as: number of cases, number of recovered cases, number of deaths, etc.

In addition, depending on the level of epidemic in that area, there will be different

colors. Includes 4 translation levels corresponding to 4 colors:

e Level 0 - Green
e Levell-Yellow
e Level 2-Orange

e Level 3—-Red

86

:o | Xd Yén Vién, Huyén Gia Ldm, Thanh phd Ha Ndi Aa

undefined v

Lam Thuong =53¢
@ wem x® Lai Tan Thanh Vién
A Trang chi Hong Ha ™ Van Son Thanh phé Ha NoiVN-1 REM Nad Chéu LD
— IR LR S s
) BEEAM BREAN e i A 4 Quang Chau
B Théng tin Téng sb ca 141 chg'agq i
Ph6 Nhi Nam Ninh ° Do
8 Duyét tai khodn L Sécatirvong 63 AT Nooe Lam 5 o 75
? =~ a3m Tham Quyén
@ Tinh hinh dich Hr At Sé cahdiphuc 76 #lih
Maﬁkﬂﬁq.ztj« Mic 60 chnih bib 3 Kh:;";%‘w A Duong Giang vace
M Ban db dich 7 VIGO0 cnn D80~ Q Mau Danh by
: Bic s EEh
I Biéu dddich p'Mong Cail LB Traén; Icggng
Mong Heal rach c\/f/ uan
%Y m g & M
CHIANG RAI il o T i L
L AQS s
e Xayaboury
2:‘;‘1 Ky vo';\“(}'&::
a 5] Tp_Ha Tinh Tam A
ot B A e A =z
n_tVignxiane \ Nokaina:
2578 Nokai:Narl
Figure 4.38 Pandemic map interface (2)

Use the mouse wheel to zoom out or zoom in on the map. Click on the area you
want to view to see the epidemic situation displayed on the map. Click on the pandemic
chart to see the epidemic chart in that province/city.

Pandemic chart
2@ |X3 Yén Vién, Huyén Gia Ldm, Thanh phé Ha N&i a undefined v
AT h . a = ~ P . S * A Y A
e Tinh hinh dich bénh theo thé&i gian ciia Thanh pho Ha Noi
& Théng tin 30
.
Duyét tai khoan 25 i RN
Vi \

@ Tinh hinh dich RN AN

20 . o oo
M1 Ban 45 dich 53 L o

S5 7 s N
I Biéu dd dich < e - N \\
v B * A
10 ‘/ _,’ \“\\
Ca
5 r) \“\\ - "/’,—f"-<:: T = »,:’"”"
S Q¥ _,_,:;,: —————— ‘-~~:_“_: = UEEET
o Sbcamcioi = Sécatirvang = 56 ca héi phyc Mg = =
17 May 18 May 19 May 20 May 21 May 22 May

Figure 4.39 Pandemic chart interface (1)

The chart shows the pandemic situation of the province.

87

:_g | Xa Yén Vién, Huyén Gia Lam, Thanh ph& Ha Ni Aa undefined v

A& Trang chli ~ < - ~ < s . 5 - .
Tinh hinh dich bénh theo th&i gian cia Ca nwéc
B8 Théng tin 35
Duyét tai khodn 30
I
@ Tinhhinh dich 25 N
J’ ‘l
W Ban db dich o fE)
5 S
5 [
¢ Biéu dd dich o 15 i '.}\‘
v Jn
{0
10 " t Y -
[[} P s T —
! 3 Al =T T ——
5—4 N SPEY i —
i AN N AN PP ———
156 ca mic mid =56 c:*:u‘ vong ~253°Ca hoi phuc T —
0 phy — -
18 May 20 May 22 May 24 May 26 May 28 May 30 May 01 Jun 03 Jun 05 Jun 07 Jun 09 Jun 11 Jun J3un

Figure 4.40 Pandemic chart interface (2)

The chart shows the pandemic situation in the country and based on updated data
from commune/ward administrators including the number of new cases, the number of

new deaths, the number of new recoveries and dates.

The colors of the chart are displayed as follows:

e The number of new cases: Yellow
e The number of new deaths: Red

e The number of new recoveries: Green

88

New pandemic

Bau mia khi

~ Théng tin ngusi khai bio

Hotén*

~ Danh sich ciu hoi

Figure 4.41 New pandemic interface

When clicking the "action™ button on the list of new epidemics, the Civilian User
fills in personal information and answers the questions available in the form. After click
“save” the system will automatically record the results.

New pandemic list

Dau mua khi

Ho tin Dia chi Trigu chitng Da tiing st dung cac loai véc xin MVA-BN - con goi la C6 tiép xiic véi cac ca

Imvamune, Imvanex hodc Jynneos thé fo, f1,...

Nguyén Bt Hai Ho, S6t, Phat ;
Thinh 024201024102 Dudng ban, .. Chua Khong

Figure 4.42 New pandemic list interface

After the system records the results, medical staff can view civilians' declarations
through the "action" button.

89

Add new pandemic

Thém mdi form khai bao

Tén form khai bao *

v Danh sach cau hoi

Thém cau hoi

Figure 4.43 Add new pandemic interface

Medical staff can create new pandemic declaration forms by pressing the "add
question" button to create and fill in the desired question forms. Click “save” to create

the template.

4.3 Conclusion

The development and deployment of the application has been completed, integrating
necessary functions and ensuring system stability and security. The system is now ready
for operation, meeting the set requirements and addressing practical issues in managing
the pandemic. Next, we will summarize the entire process, evaluate the system's
effectiveness, and propose future development directions, thereby opening new

potentials and continually improving the system.

90

CHAPTER V: CONCLUSION

5.1 Results and evaluation

5.1.1 Results

“Building a website for epidemiology management using mongodb database”
project designed for three main stakeholders: administrators, medica staff, and civilian,
has been successfully completed with numerous essential features aimed at supporting

effective epidemic management and prevention.

The result of the project is a complete epidemiology management system that meets
the set requirements and brings practical benefits to epidemic prevention and control
efforts. The system not only aids administrators and medical staff in working more
efficiently but also provides the public with a valuable tool to protect their own health

and that of the community.

The main functions of the system for civilians: register, login, personal
information, posting, viewing notifications from administrators and medical staff,
declaration, epidemic situation, epidemic map, epidemic chart, declaration of new

epidemics.

The main functions of the system for medical staff: register, login, personal
information, posting notices to civilians, viewing information requesting support from
civilians and notifications from administrators. Manage and track declarations in the
area, view epidemic situations, epidemic maps, epidemic charts, create new epidemic

declaration forms.

The main functions of the system for administrators: register, login, personal
information, browsing accounts of medical staff and administrators in the area, browsing
posting, notifications from civilians, medical staff, administrators in the area, updated

epidemic situation, epidemic map, epidemic chart.

91

5.1.2 Evaluation

The project execution involved various stages including information collection,
system design, technology research, programming, and testing to ensure the system

operates stably and efficiently.

In the initial phase, | gathered information on different epidemics, epidemiological
conditions across various regions, the needs of the public, and specific requirements from
medical staff. The programming and testing phases were conducted rigorously to ensure
the system's stability, and efficiency. Functional modules were developed and tested
independently before being integrated and subjected to system-wide testing. | also
conducted performance tests to ensure the system could handle large volumes of data

and simultaneous access by multiple users.

In summary, the development of the epidemiology management system has
successfully as the initial goals with the need for surveys and solutions, bringing practical
benefits to epidemic prevention and control efforts. It not only helps administrators and
medical staff work more effectively, but also provides civilians with a valuable system

to protect their own health and that of the community.
5.2 Limitation

Although, I have successfully built an epidemiology management system website.
But due to poor knowledge and limited implementation time, the website still has many
problems in research, design and implementation. This system is still rudimentary, has
poor functionality and has not achieved high accuracy. Some incomplete functions
sometimes cause errors. The built database for testing is still small with a few hundred
cases and with limitations in scenarios. Weak security, vulnerable to data exploitation.
Appropriate web technologies have not been deployed and applied, leading to system
construction that is still sketchy, the general interface is not innovative, and system
optimization is not effective. Poor survey to propose a new system and improve the

system. Using mongodb database requires high memory to store data. During the project

92

implementation, | realized the necessity and importance of learning and self-
development. | hope to be able to develop the project more effectively and apply it into

practice in the future.

5.3 Future development
As we look to the future, I want to implement an epidemiology management system
to make it more robust, efficient, and capable of addressing a broader range of health

challenges.

One significant upgrade involves transitioning from traditional web technologies
to React]S for the front-end development. React]S, with its component-based
architecture and efficient rendering, will allow us to build a more responsive and

interactive user interface.

Another development will be the implementation of a real-time epidemic
information system. Utilizing WebSocket or similar real-time communication
technologies. Real-time data will be crucial in managing epidemic outbreaks more
effectively, allowing for quicker response times and more accurate situational

awareness.

Furthermore, | want to combine advanced analytics and machine learning
algorithms to better understand epidemic patterns and predict future outbreaks. By
leveraging big data and Al, the application can identify trends and anomalies that human
analysts may not immediately notice. These insights will help health authorities make

informed decisions and proactively implement preventative measures.

These advances will significantly improve the app's ability to manage and respond
to many health challenges, ultimately contributing to more effective epidemic prevention

and control.

93

REFERENCES

[1] Dung Firebase Storage nhu backend luu trit dit liéu cho ing dung Pham Xuan Lu
https://viblo.asia/p/dung-firebase-storage-nhu-backend-luu-tru-du-lieu-cho-ung-dung-
android-ZDEVLYAzGJb

[2] Use Case Diagram iviettech.vn https://iviettech.vn/blog/543-ban-ve-use-case-use-

case-diagram.html

[3] https://www.linkedin.com/posts/akash-satpute31 _mongodb-is-a-popular-open-
source-nosql-database-activity-7181241114153164801-j0Cb

[4] https://www.imensosoftware.com/blog/why-nodejs-is-the-perfect-choice-for-

building-scalable-and-high-performance-applications/

[5] https://geobgu.xyz/web-mapping/leaflet.html

[6] https://www.npmjs.com/package/@canvasjs/charts

[7] https://www.aptible.com/docs/getting-started/deploy-starter-template/node-js

[8] https://support.planet.com/hc/en-us/articles/360016337117-Creating-a-GeoJSON-

file

[9] https://www.sentrient.com.au/blog/covid-19-management-system

[10] https://www.researchgate.net/figure/Promise-of-MSC-therapies-for-COVID-19-A-
Rapid-global-spread-of-severe-acute figl 341496418

[11] https://www.semanticscholar.org/paper/COVID-19%3A-Epidemiology%2C-

Evolution%2C-and-Perspectives-Sun-
He/2f547947bf87380c7fab13ba2c663bbbe9e643ec/fiqure/0

[12] https://bloganchoi.com/mang-xa-hoi-anh-huong-suc-khoe-tam-than-trong-dai-
dich/

94

https://viblo.asia/p/dung-firebase-storage-nhu-backend-luu-tru-du-lieu-cho-ung-dung-android-ZDEvLYAzGJb
https://viblo.asia/p/dung-firebase-storage-nhu-backend-luu-tru-du-lieu-cho-ung-dung-android-ZDEvLYAzGJb
https://iviettech.vn/blog/543-ban-ve-use-case-use-case-diagram.html
https://iviettech.vn/blog/543-ban-ve-use-case-use-case-diagram.html
https://www.linkedin.com/posts/akash-satpute31_mongodb-is-a-popular-open-source-nosql-database-activity-7181241114153164801-j0Cb
https://www.linkedin.com/posts/akash-satpute31_mongodb-is-a-popular-open-source-nosql-database-activity-7181241114153164801-j0Cb
https://www.imensosoftware.com/blog/why-nodejs-is-the-perfect-choice-for-building-scalable-and-high-performance-applications/
https://www.imensosoftware.com/blog/why-nodejs-is-the-perfect-choice-for-building-scalable-and-high-performance-applications/
https://geobgu.xyz/web-mapping/leaflet.html
https://www.npmjs.com/package/@canvasjs/charts
https://www.aptible.com/docs/getting-started/deploy-starter-template/node-js
https://support.planet.com/hc/en-us/articles/360016337117-Creating-a-GeoJSON-file
https://support.planet.com/hc/en-us/articles/360016337117-Creating-a-GeoJSON-file
https://www.sentrient.com.au/blog/covid-19-management-system
https://www.researchgate.net/figure/Promise-of-MSC-therapies-for-COVID-19-A-Rapid-global-spread-of-severe-acute_fig1_341496418
https://www.researchgate.net/figure/Promise-of-MSC-therapies-for-COVID-19-A-Rapid-global-spread-of-severe-acute_fig1_341496418
https://www.semanticscholar.org/paper/COVID-19%3A-Epidemiology%2C-Evolution%2C-and-Perspectives-Sun-He/2f547947bf87380c7fab13ba2c663bbbe9e643ec/figure/0
https://www.semanticscholar.org/paper/COVID-19%3A-Epidemiology%2C-Evolution%2C-and-Perspectives-Sun-He/2f547947bf87380c7fab13ba2c663bbbe9e643ec/figure/0
https://www.semanticscholar.org/paper/COVID-19%3A-Epidemiology%2C-Evolution%2C-and-Perspectives-Sun-He/2f547947bf87380c7fab13ba2c663bbbe9e643ec/figure/0
https://bloganchoi.com/mang-xa-hoi-anh-huong-suc-khoe-tam-than-trong-dai-dich/
https://bloganchoi.com/mang-xa-hoi-anh-huong-suc-khoe-tam-than-trong-dai-dich/

[13] https://www.path.org/our-impact/articles/open-source-software-tool-helps-

governments-monitor-covid-19/

[14] https://wallhere.com/vi/wallpaper/1333085
[15] https://appsbd.com/how-to-create-map-using-leaflet-js-best-way-to-figure/

[16] https://support.planet.com/hc/en-us/articles/360016337117-Creating-a-GeoJSON-
file

[17] https://www.npmjs.com/package/@canvasjs/charts

[18] https://www.mongodb.com/products/tools

[19] https://www.geeksforgeeks.org/how-to-add-collaborators-to-a-firebase-app/

[20] https://medium.com/scalp/how-to-back-up-firebase-firestore-and-firebase-storage-
bucket-b6d8dbcOcd7c

[21] https://cloudsundial.com/salesforce-server-access-oauth-flows

95

https://www.path.org/our-impact/articles/open-source-software-tool-helps-governments-monitor-covid-19/
https://www.path.org/our-impact/articles/open-source-software-tool-helps-governments-monitor-covid-19/
https://support.planet.com/hc/en-us/articles/360016337117-Creating-a-GeoJSON-file
https://support.planet.com/hc/en-us/articles/360016337117-Creating-a-GeoJSON-file
https://www.npmjs.com/package/@canvasjs/charts
https://www.mongodb.com/products/tools
https://www.geeksforgeeks.org/how-to-add-collaborators-to-a-firebase-app/
https://medium.com/scalp/how-to-back-up-firebase-firestore-and-firebase-storage-bucket-b6d8dbc0cd7c
https://medium.com/scalp/how-to-back-up-firebase-firestore-and-firebase-storage-bucket-b6d8dbc0cd7c
https://cloudsundial.com/salesforce-server-access-oauth-flows

