

VIETNAM NATIONAL UNIVERSITY, HANOI

INTERNATIONAL SCHOOL

GRADUATION PROJECT

PROJECT NAME:

BUILDING A WEBSITE FOR EPIDEMIOLOGY

MANAGEMENT USING MONGODB DATABASE

 Student’s name

Nguyễn Mạnh Thành

Hanoi - Year 2024

VIETNAM NATIONAL UNIVERSITY, HANOI

INTERNATIONAL SCHOOL

GRADUATION PROJECT

PROJECT NAME:

BUILDING A WEBSITE FOR EPIDEMIOLOGY

MANAGEMENT USING MONGODB DATABASE

SUPERVISOR: PhD. Nguyễn Đăng Khoa

STUDENT: Nguyễn Mạnh Thành

STUDENT ID: 19071627

COHORT: QHQ2019

SUBJECTCODE: INS401401

MAJOR: Informatics Computer and Engineering

Hanoi - Year 2024

1

 ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Dr. Nguyen Dang Khoa for his

enthusiastic guidance throughout the process of completing this design project. Your

dedication and expertise have been instrumental in achieving the results we see today.

Your invaluable guidance and support throughout the project have been greatly

appreciated. Your extensive knowledge, consistency, and dedication have helped me

overcome challenges and develop a comprehensive skill set.

I also wish to acknowledge your invaluable assistance and advice in editing and

refining the project. Your constructive feedback and detailed comments have deepened

my understanding of the content and enhanced my self-evaluation skills.

Furthermore, I would like to extend my thanks to the entire school, my friends,

family, and everyone who shared their knowledge, opinions, and encouragement during

the project. The support from you and the community has been a significant source of

motivation, contributing greatly to the successful completion of this project.

I am confident that the knowledge and skills acquired here will serve as a solid

foundation for future development. Once again, I sincerely thank you and everyone who

supported me on this journey.

Best regards,

2

LETTER OF DECLARATION

I hereby affirm that this project “Building a website for epidemiology

management using mongodb database” is my own research, conducted under the

guidance of Dr. Nguyen Dang Khoa all results are honest and original, not copied from

any other work.

All references are clearly sourced in the bibliography. I accept full responsibility

for any violations of the school’s statutes. I have adhered to all regulations regarding

research ethics and intellectual property rights. I understand that failure to comply can

lead to serious consequences.

This project is a comprehensive study that involves critical thinking and innovative

ideas. It contributes to the existing knowledge in my field. I am prepared to defend my

work and learn from constructive criticism to improve my future research. I am

committed to upholding the highest standards of academic integrity…

Hanoi, June 2024

Author

Nguyen Manh Thanh

3

ABSTRACT

A comprehensive national epidemiology management website is essential for

several reasons. Firstly, it centralizes the management of epidemic outbreaks across the

country, providing a unified platform for health authorities, medical professionals, and

the public. This system enables real-time data sharing and collaboration among different

regions and agencies, ensuring that everyone has access to the latest information and

resources. By integrating various data sources, such as hospitals, laboratories, and

research institutions, the website can offer a holistic view of the epidemic landscape,

facilitating more effective and coordinated responses to outbreaks. This nationwide

approach helps in standardizing protocols and procedures, reducing discrepancies and

improving the overall efficiency of epidemiology management efforts.

Secondly, an epidemiology management website enhances the ability to monitor,

track, and predict epidemic trends. By aggregating data from various regions and health

facilities, the system can provide accurate and timely statistics on the spread of

epidemics. This data-driven approach enables health authorities to identify patterns and

potential hotspots early, allowing for proactive measures to be taken before situations

worsen. Predictive analytics can be employed to forecast the trajectory of outbreaks,

informing policy decisions and resource allocation. This foresight is crucial in preparing

for and mitigating the impact of future epidemics, ultimately saving lives and reducing

the burden on healthcare systems.

Lastly, the website plays a vital role in minimizing the spread of epidemics and

containing outbreaks. By providing daily updates on the status of various epidemics, it

keeps the public informed and aware of current health risks. This transparency is critical

in promoting adherence to public health guidelines and recommendations. Furthermore,

the website can facilitate the dissemination of crucial information on preventive

measures, treatment options, and vaccination campaigns, empowering individuals to

take proactive steps in protecting their health. In times of crisis, timely and accurate

information can make the difference between containment and escalation. The ability to

4

quickly update and disseminate information helps in mobilizing resources and personnel

to areas most in need, effectively curbing the spread of epidemics and preventing them

from becoming widespread epidemics.

5

LIST OF ABBREVIATIONS

Abbreviation Definition

ACID Atomicity, Consistency, Isolation, Durability

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CSS Cascading Style Sheets

GEOJSON Geographic JavaScript Object Notation

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

I/O Input/Output

JS JavaScript

JWT JSON Web Token

NoSQL Not only SQL

SEO Search Engine Optimization

SSO Single Sign-On

RSA Rivest, Shamir, and Adleman

6

LIST OF FIGURES

Figure 2.1 Covid health risks [10] ... 15

Figure 2.2 Covid-19 pandemic [11] ... 16

Figure 2.3 Online epidemic management system [13] .. 17

Figure 2.4 Overview use case diagram .. 18

Figure 2.5 Decay usecase chart notification management ... 19

Figure 2.6 Decay usecase chart dynamic declaration .. 20

Figure 2.7 Decay usecase chart personal declaration .. 21

Figure 2.8 Decay usecase chart epidemic situation ... 22

Figure 3.1 Front-end technology [14] .. 26

Figure 3.2 How Express js works? ... 33

Figure 3.3 MongoDB database backup and restore process .. 37

Figure 3.4 Firebase [19] ... 40

Figure 3.5 Firebase storage [20]... 42

Figure 3.6 JWT bearer operating model [21] ... 45

Figure 4.1 Client server .. 48

Figure 4.2 Design overview ... 49

Figure 4.3 Database design diagram .. 51

Figure 4.4 MongoDB deploy – deployment database.. 61

Figure 4.5 MongoDB deploy – create cluster .. 62

Figure 4.6 MongoDB deploy – connect from backend .. 62

Figure 4.7 MongoDB deploy successfully ... 63

Figure 4.8 Backend folder structure ... 64

Figure 4.9 Frontend folder structure .. 65

Figure 4.10 Deploy to Aptible with git push ... 66

Figure 4.11 Deploy to Aptible – add ssh key ... 67

Figure 4.12 Deploy to Aptible - environment .. 67

Figure 4.13 Deploy to Aptible – prepare the template ... 68

Figure 4.14 Deploy to Aptible - environment variables .. 68

Figure 4.15 Deploy to Aptible - view logs in real time ... 69

Figure 4.16 Deploy to Aptible - expose app .. 69

7

Figure 4.17 Deploy to Aptible successfully ... 70

Figure 4.18 Build in APIs (1) ... 71

Figure 4.19 Build in APIs (2) ... 72

Figure 4.20 Build in APIs (3) ... 73

Figure 4.21 Build in APIs (4) ... 74

Figure 4.22 Login interface .. 75

Figure 4.23 Register interface .. 76

Figure 4.24 Account approval interface ... 77

Figure 4.25 Personal information interface .. 78

Figure 4.26 Announcement/Post interface ... 79

Figure 4.27 Approve announcement/post interface ... 80

Figure 4.28 General declaration interface .. 81

Figure 4.29 General declaration list interface .. 81

Figure 4.30 Entry declaration interface .. 82

Figure 4.31 Entry declaration list interface .. 82

Figure 4.32 Move declaration interface ... 83

Figure 4.33 Move declaration list interface ... 83

Figure 4.34 Situation reports pandemic interface (1) .. 84

Figure 4.35 Situation reports pandemic interface (2) .. 84

Figure 4.36 Update situation pandemic interface .. 85

Figure 4.37 Pandemic map interface (1) .. 86

Figure 4.38 Pandemic map interface (2) .. 87

Figure 4.39 Pandemic chart interface (1) ... 87

Figure 4.40 Pandemic chart interface (2) ... 88

Figure 4.41 New pandemic interface ... 89

Figure 4.42 New pandemic list interface ... 89

Figure 4.43 Add new pandemic interface .. 90

8

LIST OF TABLES

Table 4.1 User schema ... 52

Table 4.2 Admin_info schema ... 52

Table 4.3 Person_info schema ... 53

Table 4.4 Medical_info schema ... 54

Table 4.5 Domestic_guest schema ... 55

Table 4.6 Move_declaration schema ... 56

Table 4.7 Entry_declaration schema .. 58

Table 4.8 Unit Schema ... 60

Table 4.9 Notification schema ... 60

9

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... 1

LETTER OF DECLARATION ... 2

ABSTRACT ... 3

LIST OF ABBREVIATIONS .. 5

LIST OF FIGURES .. 6

LIST OF TABLES ... 8

TABLE OF CONTENTS ... 9

CHAPTER I: OVERVIEW OF THE TOPIC .. 12

1.1 Background of the topic ... 12

1.2 Objectives of the topic ... 12

1.3 Oriented .. 13

1.4 Conclusion .. 13

CHAPTER II: SURVEY AND REQUIREMENTS ANALYSIS 14

2.1 Current status survey .. 14

2.2 Function overview .. 18

2.2.1 Overview use case diagram ... 18

2.2.2 Decay use case diagram .. 19

2.3 Conclusion .. 23

CHAPTER III: OVERVIEW OF TECHNOLOGY... 24

3.1 Frontend ... 24

3.1.1 jQuery .. 24

3.1.2 Leaflet technology ... 27

3.1.3 GeoJSON ... 29

3.1.4 CanvasJS ... 31

3.2 Backend .. 33

3.2.1 Node.js and express.js ... 33

3.2.2 MongoDB .. 36

3.2.3 Firebase ... 40

3.2.4 JWT bearer .. 44

3.3 Conclusion .. 47

10

CHAPTER IV: APPLICATION DEVELOPMENT AND DEPLOYMENT 48

4.1 Architectural design ... 48

4.1.1 Software architecture selection ... 48

4.1.2 Design overview.. 49

4.1.3 Database design ... 51

4.1.4 Description of the web development .. 61

4.1.5 Built-in APIs ... 71

4.2 System interface design ... 75

4.3 Conclusion .. 90

CHAPTER V: CONCLUSION .. 91

5.1 Results and evaluation .. 91

5.1.1 Results ... 91

5.1.2 Evaluation ... 92

5.2 Limitation ... 92

5.3 Future development .. 93

REFERENCES ... 94

12

CHAPTER I: OVERVIEW OF THE TOPIC

This chapter introduces the topic, providing the background and rationale for

choosing to develop epidemiology management website system. It also outlines the main

objectives of the project.

1.1 Background of the topic

In recent years, global warming has led to the ice phenomenon, accompanied by

epidemics from ancient times preserved in blocks of ice. These epidemics have never

appeared before, and there is no vaccine to prevent them or specific treatment methods.

The consequences lead to rapid epidemic outbreaks.

Along with the development of technologies that humans have invented, we need

to thoroughly apply those applications to the consequences that humans have indirectly

created.

Hopefully “Building a website for epidemiology management using MongoDB

database” can contribute to preventing unpredictable consequences that we can hardly

imagine.

1.2 Objectives of the topic

To build a system with such features, I chose to make a website system for three

types of users:

 Manager: allows the management and approval of all accounts on the system,

enables notifications to the entire system, updates the epidemic situation across

units, and calculates the epidemic situation nationwide

 Medical staff: allows the creation of new dynamic forms to survey the epidemic

situation from the public, collects and compiles the results of declarations from

the public, views epidemic statistics and charts, and issues notifications such as

vaccination information to all units and the entire country.

13

 Civilian: allows viewing the epidemic situation in the local area and nationwide,

tracking the progression of the epidemic over time, viewing epidemic maps,

filling out forms issued by healthcare staff, declaring entry if entering the country,

declaring movement if traveling within the country, and posting questions or

requests for assistance if needed.

1.3 Oriented

Build a website system for the above three agents, accompanied by a server that

provides APIs to be able to implement the functions and features.

The system will be divided into 2 main parts: Building frontend and backend.

 Frontend is to build a user interface specifically for user agents such as

administrator, medical staff and civilian using HTML, CSS and JS technology.

 Backend will build a service that provides APIs specifically for businesses, using

NodeJS technology and databases using MongoDB technology.

1.4 Conclusion

The overview provided a clear understanding of the background and importance of

epidemiology management system development. This information lays the foundation

for approaching the next steps effectively and purposefully. Next, we will conduct a

survey and requirements analysis, an important step to collect detailed information about

specific needs and actual conditions, thereby determining the exact requirements for the

system. This will ensure the system is designed and developed in accordance with actual

needs.

14

CHAPTER II: SURVEY AND REQUIREMENTS ANALYSIS

Following the overview, this chapter delves into the survey and requirements

analysis. The goal is to gather necessary information and identify the specific

requirements for the system.

2.1 Current status survey

The advent of the COVID-19 pandemic has underscored the vulnerability of global

health systems and the importance of rapid, coordinated responses to health crises. This

essay explores the various challenges posed by such pandemics and discusses potential

solutions. This chapter provides the background and rationale for choosing to develop

an epidemiology management website system. It also outlines the main objectives of the

project.

Health risks:

The primary concern of any pandemic is the health risk it poses to the global

population. COVID-19, for instance, has proven to be a highly infectious epidemic,

causing severe illness and death in a significant number of cases. The virus primarily

affects the respiratory system, but its impact extends to other organs, leading to a range

of complications. The elderly and those with underlying health conditions are

particularly at risk, further straining healthcare systems. Take a look at this insightful

infographic which delves into the promising role of mesenchymal stem cells (MSCs) in

COVID-19 treatment, showcasing the rapid global spread of the virus and the anticipated

therapeutic approaches.

15

Figure 2.1 Covid health risks [10]

Figure 2.1 presents the rapid global spread of SARS-CoV-2 and associated deaths,

anticipated treatments for COVID-19, and particularly Mesenchymal Stem Cells

(MSCs) therapy. It shows how MSCs can be separated from periosteum tissue and their

potential therapeutic effects against COVID-19. The infographic also discusses the risks

associated with MSC therapy. It provides a comprehensive view of the role of MSC

therapy in treating COVID-19.

Rapid spread:

The rapid spread of COVID-19 has been facilitated by globalization and increased

human mobility. The virus quickly traversed borders, infecting millions worldwide

within a few months. This rapid spread has overwhelmed health systems, leading to

shortages of medical supplies and healthcare workers, thereby exacerbating the crisis.

Epidemiology:

Understanding the epidemiology of a pandemic is crucial for its management.

Epidemiologists study the distribution and determinants of health-related states in

specific populations and apply this study to control health problems. In the case of

COVID-19, epidemiological studies have been instrumental in understanding the virus’s

16

transmission dynamics, informing public health interventions. Look at this

comprehensive visual representation which captures the early stages of the COVID-19

pandemic, detailing the initial case numbers, spread patterns, and key milestones in the

outbreak’s evolution.

Figure 2.2 Covid-19 pandemic [11]

Figure 2.2 presents for three separate graphs related to the COVID-19 pandemic.Graph

A shows a timeline from December 2019 to February 2020, indicating the number of

confirmed cases and deaths, with key events such as the closure of the Wuhan seafood

market and WHO announcements. Graph B is a map of China showing the distribution

of confirmed cases across provinces. Graph C is a global map indicating the spread of

COVID-19 to other countries. This image represents the early spread and impact of

COVID-19 globally.

Isolation and treatment:

Isolation and treatment are key strategies in managing a pandemic. Isolation helps

to curb the spread of the virus, while treatment protocols ensure that those infected

17

receive appropriate care. However, these measures require substantial resources and

pose significant logistical challenges. In the case of COVID-19, the sudden surge in

cases led to a shortage of isolation facilities and essential medical supplies.

Public communication:

Effective communication is vital during a pandemic. Authorities must keep the

public informed about the situation, including the risks involved, preventive measures,

and progress in combating the epidemic. During the COVID-19 pandemic, regular

briefings and updates from health authorities have been crucial in managing public

expectations and ensuring adherence to safety protocols.

Online epidemic management system:

The COVID-19 pandemic has highlighted the importance of leveraging technology

in epidemic management. An Online Epidemic Management System 4.0 can play a

pivotal role in tracking the spread of the epidemic, managing resources, and facilitating

communication between healthcare providers and the public. Such a system can provide

real-time data, enabling swift responses to change in the pandemic’s trajectory. [9]

Figure 2.3 Online epidemic management system [13]

Figure 2.4 presents a health surveillance process. It starts with a “Health facility”, leading

to an “Informant” and then to a “Surveillance officer.” From there, it splits into two

paths: one leading to a “Case supervisor,” then to multiple “Case officers,” and another

18

path leading to a “Surveillance supervisor,” which further leads to a “Contact supervisor”

and then multiple “Contact officers.” This flowchart outlines the hierarchy and workflow

in health surveillance, crucial for understanding how health data is managed and how

cases are followed up within an organization.

2.2 Function overview

2.2.1 Overview use case diagram

 Figure 2.4 Overview use case diagram

Figure 2.5 presents for three main actors: manager, medical staff and civilian.[2]

Description below:

 For manager, there are the following main use cases: register, login, logout,

update personal info, notification management, approve account, update epidemic

situation,etc.

19

 For medical staff, there are the following main use cases: register, login, logout,

update personal info, post notification, epidemic situation, dynamic declaration,

etc.

 For civilian, there are the following main use cases: register, login, logout,

notification management, personal declaration, etc.

2.2.2 Decay use case diagram

Figure 2.5 Decay usecase chart notification management

Figure 2.6 presents for actors: “manager,” “medical_staff,” and “civilian”. Description

below:

Actor functions:

 The “manager” actor has three use cases associated with them: “Post

announcements,” “View notifications,” and “View announcements from medical

staff.”

 The “medical_staff” actor has four use cases: “Post epidemiological notices,”

“View notifications,” “View epidemiological notes from medical staff,” and

“Post questions, ask for help.”

20

 The “civilian” actor is connected to two use cases: “View notifications” and

“View questions, ask for help from civilian.”

Relationships between functions:

 The “Post announcements” function of the “manager” actor seems to be included

in the “View announcements from medical staff” function of the same factor,

indicating that the manager can view the announcements they post.

 The “Post epidemiological notices” function of the “medical_staff” factor is

included in the “View epidemiological notes from medical staff” function,

suggesting that medical staff can view the notices they post.

 The “View notifications” function is common to all factors, indicating that all

factors can view notifications.

 The “Post questions, ask for help” function of the “medical_staff” factor and the

“View questions, ask for help from civilian” function of the “civilian” actor seem

to be related, suggesting a platform where civilians can view and respond to

questions posted by medical staff.

Figure 2.6 Decay usecase chart dynamic declaration

 Figure 2.7 presents for actors: “medical_staff” and “civilian”. Description below:

21

Actor functions:

 The “medical_staff” actor has three use cases associated with them: “View list

declare from civilian,” and three other functions that are not fully visible due to

the image cutoff.

 The “civilian” actor is connected to four use cases: “Add a new dynamic form

declare,” “Update a dynamic form declare,” “Delete a dynamic form declare,”

and “Declare a dynamic form.”

Relationships between functions:

 The “Add a new dynamic form declare,” “Update a dynamic form declare,” and

“Delete a dynamic form declare” functions of the “civilian” actor extend to the

“View list declare from civilian” function of the “medical_staff” actor, indicating

that any additions, updates, or deletions made by civilians can be viewed by the

medical staff.

Figure 2.7 Decay usecase chart personal declaration

Figure 2.8 presents for actors: “medical_staff” and “civilian”. Description below:

22

Actor functions:

 The “medical_staff” actor has three use cases associated with them: “View

declare health list,” “View declare moving list,” and “View declare entry list.”

 The “civilian” actor is connected to three use cases: “Declare health,” “Declare

moving,” and “Declare entry.”

Relationships between functions:

 The “Declare health” function of the “civilian” actor extends to the “View declare

health list” function of the “medical_staff” actor, indicating that health

declarations made by civilians can be viewed by the medical staff.

 Similarly, the “Declare moving” function of the “civilian” actor extends to the

“View declare moving list” function of the “medical_staff” actor, suggesting that

moving declarations made by civilians can be viewed by the medical staff.

 The “Declare entry” function of the “civilian” actor extends to the “View declare

entry list” function of the “medical_staff” actor, indicating that entry declarations

made by civilians can be viewed by the medical staff.

Figure 2.8 Decay usecase chart epidemic situation

23

Figure 2.9 presents for actors: “manager,” “medical_staff,” and “civilian”. Description

below:

Actor functions:

 The “manager” actor has one use case associated with them: “Update the

epidemic situation in each unit.”

 The “medical_staff” actor has two use cases: “View epidemic situation of units

in table form” and “View epidemic situation over time on the chart.”

 The “civilian” actor is connected to two use cases: “View epidemic situation of

units in table form” and “View epidemic situation of units in map.”

Relationships between functions:

 The “Update the epidemic situation in each unit” function of the “manager” actor

seems to extend to the “View epidemic situation of units in table form” function

of the “medical_staff” actor, indicating that updates made by the manager can be

viewed by the medical staff in a tabular format.

 Similarly, the “View epidemic situation of units in table form” function of the

“medical_staff” actor extends to the same function of the “civilian” actor,

suggesting that civilians can also view the epidemic situation of units in a tabular

format.

 The “View epidemic situation of units in map” function of the “civilian” actor

seems to be an alternative way for civilians to view the epidemic situation.

2.3 Conclusion

The survey and requirements analysis have given us a detailed understanding of

the essential components needed for the system. By gathering data from stakeholders

and analyzing technical factors, we have identified specific requirements, guiding the

system's development process. Next, we will explore the technology used for realizing

the identified requirements.

24

CHAPTER III: OVERVIEW OF TECHNOLOGY

With the requirements identified, this chapter presents the software and technology

used. This is an important foundation for building the system.

3.1 Frontend

The front-end development of this project relies on various technologies and

languages, including HTML, CSS, JavaScript, and jQuery. Despite not being the latest

technologies, they effectively solve challenges related to User Interface (UI) and User

Experience (UX).

 Initial Stage: At the beginning, HTML, CSS, and JavaScript are used to create the

basic structure of the website. HTML forms the backbone by defining the structure, CSS

styles the user interface to make it visually appealing, and JavaScript adds dynamic

interactions to make the site interactive.

3.1.1 jQuery

UI-UX Development Stage: During the development phase focused on enhancing

UI and UX, jQuery is used to add dynamic effects, animations, and interactions to the

website without sacrificing performance. This lightweight library is easy to deploy,

integrates seamlessly into projects, and aids in SEO optimization.

Advantages of jQuery:

jQuery, a popular JavaScript library, simplifies complex tasks with its concise

syntax, reducing the amount of code required for common operations. It addresses cross-

browser compatibility issues, ensuring consistent behavior across different web browsers

and saving developers from handling these inconsistencies. jQuery's intuitive API makes

DOM manipulation, event handling, and animation straightforward for both beginners

and experienced developers. Additionally, jQuery enhances AJAX request efficiency,

simplifying asynchronous communication. Its extensive plugin library allows developers

to quickly add pre-built functions to their projects, saving development time and effort.

25

Overall, jQuery facilitates more efficient and maintainable code, making it a valuable

tool for creating dynamic and interactive web applications.

Further benefits of jQuery:

 Lightweight, improving page load speeds.

 Easy to deploy and integrate.

 Enhances SEO for better search engine performance.

Disadvantages of jQuery:

While jQuery has been beneficial in simplifying web development, it also has its

downsides. One notable drawback is its potential impact on page load times, as it adds

to the overall size of the JavaScript files that need to be downloaded and executed. This

can be particularly problematic on mobile devices with slower network connections. In

modern web development, where performance optimization is critical, the additional

weight of jQuery can be a disadvantage. Moreover, as browsers have advanced, native

JavaScript has become more powerful, reducing the necessity for jQuery in some

scenarios. Developers skilled in modern JavaScript frameworks might find jQuery adds

unnecessary complexity and overhead to their projects. Additionally, jQuery may not

perform optimally with complex web applications that require high flexibility. While

jQuery remains useful in certain situations, developers should weigh its benefits against

these potential drawbacks and consider alternatives when appropriate.

Responsive Design:

Cross-Platform Deployment Stage: Responsive design ensures that the website is

adaptable and accessible across various devices, from mobile phones and tablets to

desktops. This approach guarantees a consistent and user-friendly experience regardless

of the device being used.

26

Future plan:

Using ReactJS: The long-term strategy involves transitioning to ReactJS for the

front-end development. ReactJS was chosen for its high performance and code

reusability, which will enhance the user experience and reduce application complexity.

This move aims to improve scalability and streamline code management, aligning with

modern development standards.

Figure 3.1 Front-end technology [14]

Figure 3.1 presents eight different web development technologies or concepts. These

include “HTML 5 Semantic”, “CSS 3 More Action”, “Bootstrap Flexibility”, “Javascript

Event Based”, “JQuery CrossBrowsing”, and “AJAX Asynchronous”. Each icon

symbolizes a key element of modern web design and programming, highlighting the

unique features of each technology. This image is relevant for those interested in web

development as it visually summarizes important technologies used to create dynamic

and responsive websites.

27

3.1.2 Leaflet technology

Leaflet is a widely used open-source JavaScript library for interactive maps,

offering a simple and lightweight solution for embedding maps on web pages. It supports

various map layers, including tiled maps, vector layers, and markers, enabling

developers to create rich, interactive map experiences. Leaflet's design emphasizes

performance, usability, and ease of use, making it ideal for both novice and experienced

developers. [5]

One of the standout features of Leaflet is its responsiveness and compatibility with

mobile devices. It provides smooth animations and seamless interaction on both desktop

and mobile platforms, ensuring a consistent user experience across different devices. The

library also supports a wide range of map providers, such as OpenStreetMap, Mapbox,

and Google Maps, giving developers flexibility in choosing the best map service for their

application.

Leaflet's extensibility is another key advantage. It offers numerous plugins that

extend its core functionality, allowing for features like heatmaps, clustering, and

geocoding. This extensibility makes it easy to customize and enhance the map according

to specific project requirements. Additionally, Leaflet's straightforward API and

extensive documentation facilitate quick learning and implementation, reducing the

development time.

In summary, Leaflet's lightweight nature, cross-platform compatibility, and

extensive plugin ecosystem make it a powerful tool for integrating interactive maps into

web applications. Its user-friendly approach and robust performance capabilities ensure

that developers can deliver high-quality, responsive maps with minimal effort.

Advantages:

 Lightweight and Efficient: Leaflet is known for being lightweight, which means

it has a smaller file size compared to other mapping libraries like Google Maps

28

API or OpenLayers. This efficiency leads to faster loading times and improved

performance, particularly beneficial for web applications with limited resources.

 Easy to Use: Leaflet offers a simple and intuitive API, making it easy for

developers to integrate and use. Its straightforward syntax and well-documented

examples allow even those with minimal experience in mapping technologies to

get started quickly.

 Customizable: Leaflet is highly customizable. Developers can easily add custom

map layers, markers, popups, and other features. The extensive plugin ecosystem

allows for adding functionalities such as heatmaps, routing, and drawing tools

without much effort.

 Open Source: Being open source, Leaflet is free to use and modify. This fosters a

collaborative community where developers can contribute to the library, report

issues, and share plugins and extensions, enhancing the overall functionality and

reliability of the tool.

 Responsive Design: Leaflet supports responsive design out of the box, ensuring

that maps look good and are usable on a variety of devices, from desktops to

mobile phones. This adaptability is crucial in modern web development.

Disadvantages:

 Limited Advanced Features: While Leaflet excels in simplicity and ease of use, it

lacks some of the advanced features found in more robust mapping solutions like

Google Maps. For example, it does not natively support features like indoor

mapping, street view, or detailed 3D visualization.

 Dependency on Third-Party Services: Leaflet often relies on third-party tile

providers (e.g., OpenStreetMap, Mapbox) for map tiles. This dependency can

introduce limitations or costs, especially if the external service has usage

restrictions or requires a subscription for higher levels of access.

 Performance with Large Datasets: When dealing with very large datasets or high-

frequency real-time data, Leaflet's performance can degrade. Unlike some

29

commercial alternatives optimized for handling extensive data sets efficiently,

Leaflet may require additional optimization techniques or plugins to maintain

performance.

 Less Support and Documentation Compared to Major Alternatives: While Leaflet

has good documentation and community support, it is not as extensive as that of

major commercial mapping solutions like Google Maps API. This can sometimes

make it harder to find solutions to complex problems or get support for less

common use cases.

3.1.3 GeoJSON

GeoJSON is a widely used format for encoding a variety of geographic data

structures using JavaScript Object Notation (JSON). It is a powerful tool for representing

geographical features, their attributes, and even their spatial extents. GeoJSON supports

various geometry types, such as points, lines, polygons, multi-points, multi-lines, and

multi-polygons, enabling it to describe complex spatial relationships. This format is

lightweight and human-readable, making it an excellent choice for web-based mapping

applications. [8] Below is an example of GeoJSON to Map.

Advantages of GeoJSON in building web maps:

 Simplicity and Readability: GeoJSON's use of JSON makes it easy to read and

understand for both humans and machines. This simplicity facilitates quick

debugging and seamless data exchange between the server and the client.

 Compatibility: GeoJSON is natively supported by many web mapping libraries,

including Leaflet, Mapbox, and OpenLayers. This broad compatibility ensures

that developers can integrate spatial data into web maps with minimal effort.

 Interactivity: The JSON format allows for the inclusion of rich metadata

alongside geographic coordinates. This feature enhances the interactivity of web

maps, enabling features such as pop-ups, tooltips, and custom styling based on

attribute data.

30

 Performance: GeoJSON is lightweight, which can lead to faster load times and

better performance, especially for applications that require quick rendering of

spatial data in the browser.

 Versatility: GeoJSON can represent both simple and complex geometries, making

it suitable for a wide range of mapping applications, from simple point markers

to detailed multi-polygon regions.

Disadvantages of GeoJSON in building web maps:

 Scalability Issues: While GeoJSON is suitable for small to medium-sized

datasets, its performance can degrade with very large datasets. The verbosity of

JSON can lead to large file sizes, which may impact load times and browser

performance.

 Limited Precision: GeoJSON stores coordinate as floating-point numbers, which

can result in precision loss for highly detailed spatial data. This limitation might

be significant for applications requiring high-precision geographic information.

 Lack of Advanced Features: GeoJSON does not natively support more advanced

geographic features like projections, topology, or spatial indexes. These

limitations can necessitate additional processing or the use of complementary

formats and tools for advanced spatial analysis.

 Security Concerns: As with any data format used in web applications, there are

security considerations. GeoJSON, being a text-based format, can be susceptible

to injection attacks if not properly sanitized and validated.

 Browser Dependency: The performance and capabilities of GeoJSON rendering

can vary depending on the browser and device. While modern browsers handle

GeoJSON well, older or less powerful devices may struggle with complex or large

datasets.

31

3.1.4 CanvasJS

CanvasJS is a versatile and powerful JavaScript library designed to create

interactive and dynamic charts and graphs. It leverages the HTML5 Canvas element to

render high-performance charts, making it an excellent choice for visualizing data in web

applications. CanvasJS supports a wide variety of chart types, including line charts, bar

charts, pie charts, and more, and it is known for its ease of use, flexibility, and smooth

animations. This makes CanvasJS a popular tool for developers looking to embed real-

time data visualization into their websites and applications. [6]

Advantages of using CanvasJS for drawing charts to represent epidemic data:

 Interactivity: CanvasJS charts are highly interactive, allowing users to hover,

click, and zoom into specific data points. This interactivity can be particularly

useful in epidemic data visualization, where users may need to explore detailed

trends and patterns.

 Performance: CanvasJS is optimized for performance, providing smooth

rendering even with large datasets. This is crucial when dealing with extensive

epidemic data that can include numerous data points and complex time-series

visualizations.

 Ease of Use: The library is user-friendly, with a straightforward API that

simplifies the process of creating and customizing charts. Developers can quickly

set up and integrate charts into their web pages, reducing development time and

effort.

 Customization: CanvasJS offers extensive customization options, allowing

developers to tailor the look and feel of the charts to match the specific

requirements of epidemic data visualization. This includes custom colors, labels,

tooltips, and more.

 Cross-Browser Compatibility: CanvasJS ensures that charts look consistent and

perform well across different web browsers, which is essential for reaching a

32

broad audience. This reliability makes it a robust choice for public-facing

epidemic data dashboards.

Disadvantages of using CanvasJS for drawing charts to represent epidemic data:

 Learning Curve: While CanvasJS is user-friendly, there is still a learning curve

associated with mastering its API and features. New users may require some time

to become proficient in using the library effectively.

 Limited Free Features: CanvasJS offers a limited free version, with some

advanced features and functionalities restricted to the paid version. This can be a

limitation for developers or organizations with budget constraints.

 Performance with Extremely Large Datasets: Although optimized for

performance, rendering extremely large datasets can still pose challenges. In such

cases, additional techniques like data aggregation or server-side processing might

be necessary to maintain performance.

 Dependency on JavaScript: CanvasJS relies heavily on JavaScript, which means

that users with JavaScript disabled in their browsers will not be able to view the

charts. Additionally, developers need to ensure that their JavaScript code is secure

and optimized.

 Complex Customizations: For very specific or complex customizations,

developers might find CanvasJS to be somewhat restrictive compared to more

comprehensive data visualization libraries. Advanced customizations may require

additional coding and workaround solutions.

33

3.2 Backend

3.2.1 Node.js and express.js

Node.js is a powerful open-source server environment that runs on various

platforms, including Windows, Linux, and Mac OS. Built on Chrome's V8 JavaScript

engine, Node.js uses an event-driven, non-blocking I/O model, which makes it

lightweight and efficient. This model is particularly well-suited for real-time

applications, such as chat applications and live data feeds, where maintaining numerous

simultaneous connections is essential. [4] Below is an illustration of how the express.js

application framework for Node.js.

Figure 3.2 How Express js works?

Figure 3.5 presents how Express.js, a web application framework for Node.js, works. It

shows the flow of an HTTP request through various middleware functions before it

reaches the main task and then returns an HTTP response. The process begins with an

HTTP Request being sent to a Matched Route, then sequentially passing through CORS

Middleware, CSRF Middleware, Auth Middleware, and finally reaching the Main Task.

After processing in the Main Task, an HTTP Response is generated and sent back. This

diagram is significant as it visually represents the middleware pattern used in Express.js,

which is crucial for developers to understand for building efficient web applications.

34

Node.js's package ecosystem, npm (Node Package Manager), is one of the largest

and most vibrant in the world. It offers a vast range of libraries and tools that streamline

development tasks, allowing developers to focus more on coding and less on

configuration and setup. This ecosystem's richness contributes significantly to Node.js's

popularity among developers. [4]

Express.js, a minimalist web framework for Node.js, provides a robust set of

features for building web and mobile applications. It simplifies the development of

server-side applications by offering a thin layer of fundamental web application features,

without obscuring Node.js's core functionalities. Express.js is known for its simplicity

and flexibility, allowing developers to organize their application in a way that suits their

needs.

Express.js handles a variety of HTTP requests and supports robust routing. It

allows developers to define routes for different HTTP methods and URLs, making it

easier to manage different parts of a web application. Middleware functions in Express.js

can process requests before reaching the final route handler, which is useful for tasks

like authentication, logging, and data validation.

The combination of Node.js and Express.js provides an efficient environment for

developing scalable web applications. Node.js's asynchronous nature ensures that

applications can handle a high number of simultaneous connections with minimal

overhead. Express.js adds structure and organization to Node.js applications, enabling

developers to create robust, maintainable code. Together, they are a powerful duo for

modern web development, particularly in building RESTful APIs and full-stack

applications.

Advantages:

 Fast and Efficient: Node.js uses the V8 JavaScript engine from Google, which

compiles JavaScript directly to machine code, making it extremely fast. Its non-

blocking, event-driven architecture allows it to handle multiple requests

35

simultaneously, which is highly efficient for I/O-heavy operations like API

requests or accessing databases.

 Single Programming Language: With Node.js, developers can use JavaScript for

both client-side and server-side development. This unification simplifies the

development process, allows for code reuse, and makes it easier for front-end

developers to transition to back-end development.

 Extensive Ecosystem: Node.js has a rich ecosystem with npm (Node Package

Manager), which provides access to a vast repository of open-source libraries and

modules. This allows developers to quickly add functionality to their applications

without reinventing the wheel.

 Scalability: Node.js is designed for building scalable network applications. It can

handle a large number of simultaneous connections with high throughput, making

it suitable for real-time applications like chat apps and live streaming services.

 Active Community: Node.js has a large and active community that contributes to

its ongoing development and support. This means frequent updates, a plethora of

tutorials, and a wealth of shared knowledge that developers can tap into.

 Express.js Framework: Express.js, built on top of Node.js, is a minimalist web

framework that simplifies the development of web applications and APIs. It

provides a robust set of features for building single-page, multi-page, and hybrid

web applications.

Disadvantages:

 Callback Hell: Node.js heavily relies on callbacks to handle asynchronous

operations, which can lead to deeply nested callback structures known as

"callback hell". This can make the code difficult to read and maintain. However,

this issue can be mitigated by using Promises or async/await syntax.

 Single-threaded Limitations: While Node.js's single-threaded nature is efficient

for I/O-bound operations, it can be a limitation for CPU-bound tasks. Heavy

computation tasks can block the event loop, leading to performance bottlenecks.

Solutions like worker threads or offloading tasks to separate processes can help,

but they add complexity.

 Immaturity of Tooling: Compared to more mature ecosystems like Java or .NET,

some developers may find Node.js's tooling and libraries to be less polished or

36

mature. While this is improving rapidly, it can still be a concern for larger,

enterprise-level applications.

 Lack of Strong Typing: Node.js and Express.js are primarily JavaScript-based,

which is a dynamically typed language. This can lead to issues with type safety

and can make large codebases harder to manage. However, using TypeScript with

Node.js can mitigate this issue by adding static type checking.

 Security Concerns: As with any web technology, security can be a concern.

Node.js applications, especially when using numerous third-party packages, can

be vulnerable to security threats if not properly managed. Regular updates and

security audits are essential to mitigate these risks.

 Concurrency Model: Node.js's concurrency model, which uses the event loop, is

not suited for applications requiring heavy multi-threading. While suitable for

I/O-bound tasks, it may not perform as well as multi-threaded environments for

CPU-intensive applications.

3.2.2 MongoDB

MongoDB is a popular open-source NoSQL database known for its high

performance, scalability, and flexibility. Unlike traditional relational databases,

MongoDB stores data in flexible, JSON-like documents, which allows for a more

dynamic schema. This flexibility makes MongoDB an excellent choice for applications

that require quick iterations and frequent changes to data structures. [3]

One of the key features of MongoDB is its ability to handle large volumes of data

and high-throughput operations. Its distributed architecture supports horizontal scaling,

meaning that as your data grows, you can distribute it across multiple servers or clusters.

This scalability is crucial for applications that anticipate significant growth and need to

maintain performance under heavy loads.

MongoDB also excels in handling complex data types and hierarchical data

models. Its document-oriented storage model allows embedding of documents within

documents, making it easier to represent complex relationships in a natural and intuitive

37

way. This feature reduces the need for expensive joins and can lead to more efficient

query performance.

The query language in MongoDB is another strength, offering a rich set of

operators and expressions for filtering and transforming data. MongoDB's aggregation

framework supports operations such as filtering, grouping, sorting, and reshaping data,

enabling sophisticated data analysis directly within the database. Additionally,

MongoDB provides powerful indexing capabilities, including geospatial and text search

indexes, which enhance query performance and support diverse application needs.

For developers, MongoDB offers a range of tools and integrations. The MongoDB

Atlas cloud service provides automated deployment, scaling, and backups, reducing the

operational overhead. The MongoDB Stitch backend-as-a-service platform allows

developers to connect to various services and create serverless applications. Moreover,

the community around MongoDB is vibrant, with extensive documentation, tutorials,

and a wealth of third-party libraries and tools available. Below is an image depicting the

MongoDB database backup and restore process.

 Figure 3.3 MongoDB database backup and restore process

38

Figure 3.8 presents for depicts a MongoDB database backup and restore process. It

involves a full backup stored on a local disk, and three incremental backups. The

database and ‘Database VM’ are central components. The ‘Oplogs’ box represents

operation logs. The process also includes a restore operation from the local disk to the

Database VM.

Advantages:

 Flexible Schema Design: MongoDB uses a document-oriented data model, which

allows for flexible schema design. Unlike traditional relational databases,

MongoDB doesn't require a predefined schema, enabling developers to store and

manage data in a JSON-like format (BSON). This flexibility is ideal for

applications where data structures can evolve over time.

 Scalability: MongoDB is designed with horizontal scalability in mind. It supports

sharding, which allows data to be distributed across multiple servers or clusters.

This makes it easy to scale out as the data volume grows, providing high

availability and redundancy.

 High Performance: MongoDB's architecture is optimized for read and write

performance. Its ability to handle large volumes of unstructured data and perform

operations quickly makes it suitable for high-traffic applications. Indexing,

replication, and the in-memory storage engine further enhance performance.

 Rich Query Language: MongoDB offers a powerful and flexible query language

that supports a wide range of operations, including filtering, sorting, and

aggregations. This makes it easy to perform complex queries and retrieve the

necessary data efficiently.

 Ease of Use: MongoDB’s intuitive document model aligns closely with how

developers work with data in modern applications. The syntax is simple and

familiar to those who have experience with JavaScript, making it easier to learn

and implement.

 Strong Community and Ecosystem: MongoDB has a large and active community,

along with extensive documentation and a wealth of third-party tools and

libraries. This vibrant ecosystem provides ample resources for learning and

troubleshooting, as well as numerous integrations with other technologies.

39

Disadvantages:

 Memory Usage: MongoDB can be memory-intensive, especially when handling

large volumes of data. It often requires more RAM to store indexes and frequently

accessed data in memory for faster access. This can lead to higher operational

costs for larger deployments.

 Data Redundancy: Due to its flexible schema, MongoDB often leads to data

redundancy. This denormalization can result in larger database sizes and potential

inconsistencies. Unlike relational databases, where normalization minimizes

redundancy, MongoDB requires careful schema design to manage this issue.

 Lack of ACID Transactions: While MongoDB has made strides in supporting

multi-document ACID (Atomicity, Consistency, Isolation, Durability)

transactions in recent versions, it historically lacked full ACID compliance. This

can be a drawback for applications requiring complex transactions across multiple

documents or collections.

 Complexity in Handling Relationships: MongoDB is less suited for applications

with complex relationships and joints between data entities. While it supports

embedded documents and references, handling relational data can be more

complex and less efficient compared to traditional relational databases.

 Limited Reporting and Analysis Tools: While MongoDB provides powerful

querying capabilities, it lacks the built-in reporting and analytical tools found in

some relational databases. This can necessitate additional tools or integrations for

comprehensive data analysis and reporting.

 Consistency Concerns: MongoDB’s default configuration favors eventual

consistency over immediate consistency. While this improves performance and

scalability, it can lead to scenarios where read operations may not immediately

reflect the most recent write operations. This behavior may not be suitable for

applications requiring strict data consistency.

In summary, MongoDB's flexibility, scalability, and rich feature set make it a

compelling choice for modern application development. Its ability to handle diverse data

types, combined with powerful query and aggregation capabilities, supports the creation

of sophisticated, high-performance applications. Whether used as the primary database

40

or as part of a broader data strategy, MongoDB provides the tools and flexibility needed

to manage and analyze large-scale data efficiently.

3.2.3 Firebase

Firebase is a comprehensive app development platform backed by Google,

designed to help developers build high-quality apps quickly and efficiently. It provides

a suite of cloud-based tools and services, enabling developers to focus more on creating

compelling user experiences and less on managing infrastructure. Firebase’s capabilities

span across various essential functions, including real-time databases, authentication,

cloud storage, and analytics. [1] Below is an illustration presenting the contrasting

traditional and Firebase application architectures.

Figure 3.4 Firebase [19]

Figure 3.9 presents contrast traditional and Firebase application architectures. In the

Traditional model, data flows from a mobile device to server racks, then to a cloud

service, and finally to a database. The Firebase model simplifies this process by directly

connecting client apps to Firebase, eliminating intermediate steps. This highlights

Firebase’s efficiency and simplicity for app development.

41

One of Firebase’s core features is the Realtime Database, a NoSQL cloud database

that stores data in JSON format and synchronizes it in real-time with all connected

clients. This is particularly useful for applications that require instant updates, such as

chat applications, collaborative tools, or live data feeds. Firebase also offers Firestore, a

more flexible and scalable database, which supports complex querying and hierarchical

data structures.

Authentication is another crucial service provided by Firebase. It simplifies the

process of managing user authentication and authorization. With Firebase

Authentication, developers can easily integrate various sign-in methods, including email

and password, phone authentication, and social logins such as Google, Facebook, and

Twitter. This service helps to enhance security while providing a smooth user

experience.

Firebase Cloud Storage enables developers to store and serve user-generated

content such as photos, videos, and other media files. It is built for robust, secure file

handling, and scales automatically as the app grows. Firebase also includes Cloud

Functions, which allows developers to run backend code in response to events triggered

by Firebase features or HTTPS requests.

Additionally, Firebase Analytics provides free, unlimited reporting on up to 500

distinct events. This helps developers understand user behavior, measure the impact of

changes, and make informed decisions based on real-time data. Coupled with Firebase’s

Crashlytics, developers can monitor and fix stability issues to improve app performance

and user satisfaction. Below is an illustration of backing up a project’s database and

media files.

42

Figure 3.5 Firebase storage [20]

Figure 3.10 presents for backing up a project’s database and media files using Firebase’s

Firestore and Storage bucket. It shows the process of transferring files to a secure

location, emphasizing the importance of data integrity and recovery. This is crucial for

preserving data in case of loss or damage. The image visually summarizes the process

of securing data in cloud services. It features the Firebase logo, Firestore and Storage

icons, and an illustration of file transfer.

Advantages:

 Real-time Database: Firebase's real-time database allows for instantaneous data

synchronization across all clients. This is particularly advantageous for

applications requiring real-time updates, such as chat applications, live streaming

services, and collaborative tools. Changes made in the database are immediately

reflected on all connected clients.

 Backend-as-a-Service (BaaS): Firebase provides a comprehensive suite of

backend services, including authentication, cloud storage, hosting, and cloud

functions. This all-in-one solution eliminates the need for managing backend

infrastructure, allowing developers to focus more on the front-end and application

logic.

 Scalability: Firebase is built on Google's infrastructure, which means it can scale

seamlessly to handle large amounts of data and high traffic loads. This makes it

suitable for both small startups and large-scale enterprise applications.

43

 Cross-platform Support: Firebase offers extensive support for both web and

mobile platforms, including iOS, Android, and the web. This cross-platform

capability allows developers to use a single backend service to support multiple

client platforms, streamlining development and maintenance.

 Easy Integration and Use: Firebase's SDKs are designed to be easy to integrate

into applications. Its user-friendly console and detailed documentation further

simplify the development process. Features like Firebase Authentication provide

pre-built UI components that can be easily customized.

 Security: Firebase provides robust security features, including Firebase

Authentication for user identity verification and Firebase Security Rules for

controlling data access. These tools help ensure that only authorized users can

access and manipulate data, enhancing the overall security of the application.

Disadvantages:

 Vendor Lock-in: One of the main drawbacks of using Firebase is the potential for

vendor lock-in. Since Firebase is a proprietary platform, migrating to another

service can be challenging and time-consuming. This dependency can be a

significant concern for businesses that require flexibility in their technology stack.

 Limited Querying Capabilities: While Firebase's real-time database is powerful,

it has limited querying capabilities compared to traditional SQL databases.

Complex queries involving multiple conditions or large datasets can be

cumbersome and inefficient. Developers may need to implement workarounds,

which can complicate the codebase.

 Pricing: Firebase offers a free tier with limited features, but costs can quickly

escalate as the application's user base and data storage needs grow. Services like

Firebase Realtime Database and Firebase Cloud Storage charge based on usage,

which can become expensive for high-traffic applications.

 Data Structure Constraints: Firebase's NoSQL data structure can be less intuitive

for developers accustomed to relational databases. Organizing data in a

44

hierarchical structure and managing complex relationships between data entities

can be challenging and may require a different approach to data modeling.

 Limited Server-side Logic: While Firebase provides cloud functions to run server-

side logic, there are limitations in terms of execution time, memory usage, and

available runtime environments. This can be restrictive for applications requiring

extensive backend processing or custom server-side operations.

 Offline Capabilities: Although Firebase supports offline data synchronization,

handling offline scenarios can be complex, especially for applications with

intricate data relationships and conflict resolution needs. Ensuring data

consistency and managing conflicts when the connection is restored can require

additional development effort.

In summary, Firebase offers a rich ecosystem of tools and services that cover all

aspects of app development, from backend infrastructure and user authentication to real-

time data synchronization and analytics. Its integration with other Google services and

extensive documentation makes it a powerful choice for both small and large-scale

applications.

3.2.4 JWT bearer

JWT (JSON Web Token) Bearer is a widely used standard for securing APIs and

transmitting information between parties as a JSON object. It is a compact, URL-safe

means of representing claims to be transferred between two parties. The claims in a JWT

are encoded as a JSON object that is used as the payload of a JSON Web Signature

(JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling

the claims to be digitally signed or integrity protected with a Message Authentication

Code (MAC) and/or encrypted.

One of the main advantages of JWT is its simplicity and compactness. A JWT

typically consists of three parts: a header, a payload, and a signature. The header contains

metadata about the token type and the signing algorithm. The payload contains the

45

claims, which are statements about an entity (typically, the user) and additional data. The

signature is used to verify the token's integrity and authenticity.

JWT Bearer tokens are commonly used for authorization. When a user logs in, a

server generates a JWT and sends it to the client. The client then includes this token in

the Authorization header of subsequent requests to access protected resources. The

server verifies the token's signature and claims to ensure the request is authenticated.

In essence, JWT Bearer tokens offer a secure and efficient way to handle user

authentication and authorization in modern web applications. Their stateless nature

eliminates the need for server-side session storage, reducing overhead and enhancing

scalability. Below is an illustration of the JWT Bearer Operating Model.

Figure 3.6 JWT bearer operating model [21]

Figure 3.11 presents the process of obtaining and using an access token in a system with

separate client, authorization server, and resource server entities. JWT Bearer operating

model.

Advantages:

 Statelessness: JSON Web Tokens (JWT) enable stateless authentication, meaning

the server does not need to store session information. This reduces server load

and simplifies the scaling process. Each token contains all the necessary

information, so the server can verify the token without maintaining session data.

46

 Compact and Portable: JWTs are compact and can be easily transmitted via

URLs, POST parameters, or HTTP headers. Their JSON format makes them easy

to read and generate, ensuring seamless integration with web and mobile

applications.

 Security: JWTs can be signed using a secret (HMAC) or a public/private key pair

(RSA or ECDSA). This ensures the token's integrity and authenticity, preventing

tampering. When properly implemented, JWTs provide a secure mechanism for

transmitting information between parties.

 Versatile and Flexible: JWTs are versatile and can store various types of claims,

such as user roles and permissions. This makes them suitable for different

authentication scenarios, including user authentication, API authentication, and

single sign-on (SSO).

 Cross-domain Authentication: JWTs are particularly useful for cross-domain

authentication. Since they do not require cookies, they can be easily used across

different domains, making them ideal for microservices architectures and

applications with multiple subdomains.

 Reduced Server Load: Since JWTs are self-contained, the server only needs to

verify the token's signature to authenticate the user. This reduces the need for

frequent database queries and can significantly improve the performance of the

authentication system.

Disadvantages:

 Security Risks: If not implemented correctly, JWTs can introduce security

vulnerabilities. For example, storing sensitive information in the payload without

proper encryption can expose it to potential attackers. Additionally, weak secret

keys or improper management of key rotation can compromise the security of the

tokens.

 Token Size: While JWTs are compact, they can still become relatively large if too

much information is stored in the payload. This can impact performance,

especially when used in HTTP headers or URL parameters, potentially leading to

longer load times and increased bandwidth usage.

 No Automatic Revocation: One of the significant drawbacks of JWTs is the lack

of built-in token revocation mechanisms. Once a token is issued, it remains valid

47

until it expires. If a token is compromised, there is no straightforward way to

invalidate it immediately. This requires additional mechanisms, such as

maintaining a token blacklist, to manage revocation.

 Complexity in Managing Expiry: Managing token expiry and refresh mechanisms

can be complex. Short-lived tokens improve security but require implementing a

seamless refresh process to ensure a smooth user experience. Long-lived tokens

reduce the need for frequent refreshments but increase the risk if a token is

compromised.

 Overhead in Token Parsing: Every request containing a JWT requires the server

to parse and verify the token, which adds some computational overhead. While

this is generally minimal, it can become significant in high-traffic applications

where every request must be authenticated.

 Not Suitable for Large Payloads: JWTs are not ideal for storing large amounts of

data. The more information included in the payload, the larger the token becomes,

which can negatively affect performance and efficiency.

3.3 Conclusion

This chapter has provided a comprehensive view of the technologies, from

selecting appropriate technologies to designing system and planning development. These

decisions are critical for the project's success, ensuring the system will operate efficiently

and meet the defined requirements. Next, we will move on to the actual development

and deployment of the application, a crucial step to turn plans and designs into a

complete product.

48

CHAPTER IV: APPLICATION DEVELOPMENT AND DEPLOYMENT

After outlining the architecture and technology, this chapter focuses on application

development and deployment. This is an important step in incorporating specific

requirements into the system.

4.1 Architectural design

4.1.1 Software architecture selection

The system consists of three main components:

 Client: executes on the user's web browser, where the interface is displayed for

user interaction with the system.

 Server: where requests from the Client are processed.

 Database: where data is stored.

For the basic functions of the system, the data flow will be as follows: the user

interacts with the system through the device screen, then the Client sends HTTP Requests

to the server. The server receives the request and processes it (may retrieve data from

the Database if needed), then returns the information to the Client in the form of HTTP

response. The Client receives the Response and extracts relevant information to generate

HTML/CSS pages to display to the user. Below is an illustration of the client-server

model in web communications.

Figure 4.1 Client server

49

Figure 4.1 presents the client-server model in web communications. It shows server-side

systems, including a data-store and a web server. The browser-client sends an HTTP

request to the server, which responds with data. This data is then displayed on the user

interface. This model is fundamental to understanding web technology.

4.1.2 Design overview

Figure 4.2 Design overview

Figure 4.2 presents a flowchart of a software application’s data management system. It

includes five components: Database, Repository, Service, Controller, and Entities and

Data Transfer Object (DTO). The arrows show the data flow. The Database connects to

the Repository, which links to the Service and Entities. The Service connects to the

Controller and Entities. Entities link to DTO. This represents a layered architecture in

software design. Draw by draw.io

Express.js, a minimalist web application framework for Node.js, paired with

MongoDB, a NoSQL database, forms a powerful combination for building dynamic and

scalable web applications. Understanding their operational model sheds light on how

they work seamlessly together to handle requests, manage data, and deliver content

efficiently.

50

At the core of Express.js lies its middleware system, which intercepts and processes

HTTP requests. Middleware functions can perform tasks such as parsing request bodies,

authenticating users, and logging requests. This modular architecture allows developers

to structure their applications in a clear and organized manner, chaining middleware

functions to handle requests sequentially.

When a client sends a request to an Express.js server, the request is routed to the

appropriate route handler based on the URL and HTTP method. Route handlers are

functions that execute specific logic and generate a response to the client. Express.js

provides a simple and intuitive syntax for defining routes and handling various types of

requests, making it easy to develop RESTful APIs and web applications.

MongoDB serves as the data storage layer for Express.js applications, offering a

flexible and scalable solution for managing structured and unstructured data. MongoDB

stores data in JSON-like documents, making it well-suited for handling complex data

structures and nested relationships. Express.js applications can interact with MongoDB

using the official MongoDB Node.js driver or higher-level libraries like Mongoose,

which provide a schema-based approach for defining data models and performing CRUD

operations.

The operational model of Express.js - MongoDB revolves around asynchronous

programming and non-blocking I/O, leveraging the event-driven architecture of Node.js

to handle concurrent requests efficiently. Express.js applications can handle a large

number of concurrent connections without blocking the event loop, ensuring optimal

performance and responsiveness.

Integration between Express.js and MongoDB is seamless, thanks to the

asynchronous nature of both technologies. Express.js route handlers can interact with

MongoDB databases asynchronously, performing database operations such as querying,

inserting, updating, and deleting data without blocking the execution of other requests.

51

This asynchronous model allows Express.js applications to handle complex data

operations without sacrificing performance or responsiveness.

4.1.3 Database design

Figure 4.3 Database design diagram

Figure 4.3 presents for the database includes tables of users, notification, unit,

person_info, medical_info, admin_info, entry_declaration, move_declaration,

domestic_guest.

User schema

Field Type Null

phoneNumber string not null

password string not null

type number not null

52

status number not null

unitCode string not null

unitDetail string not null

Table 4.1 User schema

User schema: To store user account information.

 phoneNumber: stores user phone number information

 password: stores user password hash code information

 type: saves the user type. The 3 categories corresponding to values 0,1,2 are

residents, managers and medical staff

 status: saves the status of the account, 0 is active and 1 otherwise

 unitCode: stores the user's unit code

 unitDetail: stores the name of the user unit

Admin_info schema

Field Type Null

fullName string not null

dateofBirth date not null

Sex bool not null

addressCode string not null

address string

nationality string not null

epidemicStatus number

Table 4.2 Admin_info schema

Admin_info schema: To store administrator information.

 fullName: To store the manager's name

 dateOfBirth: To store the manager's date of birth

53

 Sex: To Store Gender Manager

 addressCode: To store the manager address code

 address: To store the manager's text address

 nationality: To store the country name of the manager

 epidemicStatus: To store the manager's status. 0 is normal and 1 is infected

Person_info schema

Field Type Null

fullName string not null

dateOfBirth date not null

Sex bool not null

addressCode string not null

address string

nationality string not null

epidemicStatus number

Table 4.3 Person_info schema

Person_info schema: To store civilian information.

 fullName: To store people's names

 dateOfBirth: To store people's birthdays

 Sex: To store the sex of the people

 addressCode: To store people's address codes

 address: To store people's text addresses

 nationality: People's Country

54

 epidemicStatus: People's status, 0 is normal and 1 is infected

Medical_info schema

Field Type Null

fullName string Not null

dateOfBirth date Not null

Sex bool Not null

addressCode String Not null

address String

nationality String Not null

epidemicStatus number

Table 4.4 Medical_info schema

Medical_info schema: To store medical staff information.

 fullName: Save the name of the medical staff

 dateOfBirth: Date of birth of medical staff

 Sex: Gender of Medical Staff

 addressCode: Medical staff address code

 address: Text address of medical staff

 nationality: Nationality of Medical Staff

 epidemicStatus: medical staff's medical condition, 0 is normal and 1 is infected

55

Domestic_guest schema

Field Type Null

ismovingThroughTerritory bool not null

nCoVSignal bool not null

patientContact bool not null

nCoVConPCountry bool not null

nCoVConPSignal bool not null

declarationDate date not null

Table 4.5 Domestic_guest schema

Domestic_guest: To store general declaration information.

 ismovingThroughTerritory: Do you pass through the epidemic area

 nCoVSignal: whether there are signs of the epidemic

 patientContact: Have you been in contact with a sick person or are suspicious

 nCoVConPCountry: Have you been in contact with people from epidemic

countries

 nCoVConPSignal: having contact with people who show signs of epidemic

 declarationDate: declaration date

 Move_declaration schema

Field
Type Null

vehicle
string not null

vehicleNumber
string not null

56

chairNumber
number not null

departureDay
date not null

departureAddress
string not null

arrivalAddress
string not null

ismovingThroughTerriory
bool not null

nCoVSignal
bool not null

patientContact
bool not null

nCoVConPCountry
bool not null

nCoVConPSignal
bool not null

declarationDate
date not null

Table 4.6 Move_declaration schema

Move_declaration schema: To store move declaration information.

 vehicle: Transportation

 vehicleNumber: Vehicle number

 chairNumber: Number of seats

 departureDay: Departure date

 departureAddress: Departure Address

 arrivalAddress: Destination Address

 ismovingThroughTerriory: Do you pass through a country or territory

 nCoVSignal: whether there are signs of the epidemic

 patientContact: having contact with a sick person or suspecting

 nCoVConPCountry: having contact with people from epidemic countries

 nCoVConPSignal: having contact with people who show signs of epidemic

57

 declarationDate: declaration date

Entry_declaration schema

Field
Type Null

object
string not null

gate
string not null

vehicle
string not null

vehicleNumber
string not null

chairNumber
number not null

departureDay
date not null

entryDate
date not null

departureCountry
string not null

departureProvince
string not null

destinationCountry
string not null

passingCountry
string not null

addressafterQuarantine
string not null

fever
bool not null

cough
bool not null

stuffy
bool not null

soreThroat
bool not null

nausea
bool not null

58

diarrhea
bool not null

hemorrhage
bool not null

rash
bool not null

vaccineused
string not null

animalContact
bool not null

nCoVPContact
bool not null

isolationfacility
string not null

negativeconfirmation
bool not null

declarationeDate
date not null

Table 4.7 Entry_declaration schema

Entry_decalration schema: To store immigration declaration information.

 object: Object

 gate: Border Gate

 vehicle: vehicle entry

 vehicleNumber: Vehicle number

 chairNumber: Number of seats

 departureDay: Departure date

 entryDate: Date of Entry

 departureCountry: Country of departure

 departureProvince: Departure City

 destinationCountry: Country of Arrival

 passingCountry: What country has it traveled through

 addressafterQuarantine: Accommodation address after concentrated

quarantine

59

 fever: fever or not

 cough: cough or not

 stuffy: stuffy or not

 soreThroat: sore throat or not

 nausea: nausea or not

 diarrhea: diarrhea or not

 hemorrhage: hemorrhage or not

 rash: rash or not

 vaccineused: type of vaccine used

 animalContact: Have contact with wildlife

 nCoVPContact: Have you been in contact with people with symptoms of the

epidemic

 isolationfacility: isolation facility

 negativeconfirmation: negative confirmation

 declarationeDate: declaration date

Unit schema

Field
Type Null

unitName
string not null

unitCode
string not null

waringLevel
number not null

totalCases
number

totalDeaths
number

totalRecovereds
number

lastUpdateCases
number

60

lastUpdateDeaths
number

lastUpdateRecovereds
number

type
string not null

Table 4.8 Unit Schema

Unit schema: To store local unit information. (From small to large units: ward -

district - city)

 unitName: Unit Name

 unitCode: Unit Code

 waringLevel: epidemic level, there are levels 0,1,2,3

 totalCases: total number of cases

 totalDeaths: Total Deaths

 totalRecovereds: total number of recoveries

 lastUpdateCases: number of new cases

 lastUpdateDeaths: new deaths

 lastUpdateRecovereds: number of new recoveries

 type: unit type, 3 values are w,d,p corresponding to ward, district, province

Notification schema

Table 4.9 Notification schema

Notification schema: To store announcement/post information

Field Type Null

notificationContent string not null

title string not null

status number not null

posterName string not null

time date not null

61

 notificationContent: The content of the announcement

 title: Announcement Title

 status: Post Status

 posterName: Name of the person who posted the announcement

 time: Announcement posting time

4.1.4 Description of the web development

Database: MongoDB

About MongoDB: MongoDB is a non-relational, open-source, document-based

database system designed to be flexible and easily scalable. It uses a JSON document

structure to store data, making application development flexible and fast. MongoDB

Cloud is a cloud service platform provided by MongoDB, providing easy and flexible

MongoDB database management solutions in the cloud environment, helping to reduce

the burden of system administration and increase availability and flexibility for

applications.

Installation Steps: Use mongodb cloud to be able to install a mongodb instance

through the steps:

 Create an account and log in at: mongodb.com

 Go to the mongodb cloud console and select Depployment > Database

Figure 4.4 MongoDB deploy – deployment database

62

 Create a new cluster database instance

Figure 4.5 MongoDB deploy – create cluster

 Copy connection string to connect from backend

Figure 4.6 MongoDB deploy – connect from backend

63

Browse collections - similar to tables in sql. Each collection corresponds to 1

model in the nodejs backend.

Figure 4.7 MongoDB deploy successfully

Backend: NodeJS x ExpressJS

Node.js is an open-source execution environment built on a JavaScript platform for

developing easily scalable network applications. With Node.js, developers can use

JavaScript both server-side and client-side, creating a uniform development environment

for web applications.

Express.js is an extremely flexible and powerful Node.js web application

framework that is commonly used to build web applications and APIs. With Express.js,

building web applications becomes simpler by providing basic features such as routing,

middleware, and request and response management.

Node.js and Express.js are often used together to create efficient web applications

with extensive, modular, and easily scalable source code. With a large community and

64

diverse support, Node.js and Express.js have become a popular pair of technologies in

contemporary web application development.

Install the environment and backend code according to the steps:

 Install node.js from nodejs.org

 Install express.js: open a terminal or command prompt and enter the following

command

npm install express--save

 Create a new expressjs app for the backend use the express command to generate

a new project skeleton, or you can manually create the necessary files

express pandemic-management-be

 The structure of the node.js backend project will follow the following main

structure:

Figure 4.8 Backend folder structure

In which, the main file of the expressjs app is main.js

 Configure MongoDB: Install MongoDB on your machine from the official

MongoDB website and configure the connection in your project.

 Create new Mongoose model schemas: Use Mongoose to create schemas for your

data models: npm install mongoose --save

https://www.mongodb.com/try/download/community
https://www.mongodb.com/try/download/community

65

 Create controllers: Define the processing logic for each route in controller files.

 Create routes and configure APIs for Express: Define API endpoints in route files

and link them with corresponding controllers.

 Create middleware for authentication: Use packages

like passport or jsonwebtoken to build user authentication middleware.

 Run the project: Use the node or nodemon command to start the server:

 node app.js or nodemon app.js

Conclusion:

Using mongodb and nodejs, expressjs to build server APIs is simple structure and

write APIs quickly through the following steps: create a data model, create a controller

to process the APIs, create a route to route the APIs to the controllers and configure them

in the main.js

Frontend: HTML, CSS, JS:

Frontend uses basic technologies such as: html, css, and js to build user interfaces

and interactions vs. backend APIs to complete functions. Steps to build a frontend

project:

 Frontend project folder structure:

Figure 4.9 Frontend folder structure

66

In which, the page folder contains the html files of the pages, the js folder contains

javascript files that handle interactions and operations, the css folder contains the css

files to create styles for the website, the api folder contains the js files that use fetch to

call the APIs from the backend, Finally, the asset folder contains the fonts and images

needed for the interface.

Flows deploy backend to aptible cloud

Using the Deploy Code tool in the Aptible Dashboard, you can deploy the Express

Template. The tool will guide you through the following: [7]

Figure 4.10 Deploy to Aptible with git push

67

Step 01: Deploy with Git Push.

Figure 4.11 Deploy to Aptible – add ssh key

Step 02: Add an SSH key.

Step 03: Environment Setup.

Figure 4.12 Deploy to Aptible - environment

Select stack to deploy resources. This will determine what region resources are

deployed to. Then, name the environment resources will be grouped into.

68

Step 04: Prepare the template

Figure 4.13 Deploy to Aptible – prepare the template

Select Express Template for deployment and follow command-line instructions.

Step 05: Fill environment variables and deploy

Figure 4.14 Deploy to Aptible - environment variables

69

Aptible will automatically fill this template’s required databases, services, and

app’s configuration with environment variable keys to fill with values. Once complete,

save and deploy the code.

Step 06: View logs in real time

Figure 4.15 Deploy to Aptible - view logs in real time

Step 07: Expose app to the internet

Figure 4.16 Deploy to Aptible - expose app

70

Now that code is deployed, it is time to expose the app to the internet. Select the

service that needs an endpoint, and Aptible will automatically provision a managed

endpoint.

Step 08: View deployed app

Figure 4.17 Deploy to Aptible successfully

So, we have successfully deploy backend with Aptible at url https://app-74434.on-

aptible.com/

71

4.1.5 Built-in APIs

Have built a website system for manager, medical staff and civilian, 1 server

provides business APIs:

Figure 4.18 Build in APIs (1)

72

Figure 4.19 Build in APIs (2)

73

Figure 4.20 Build in APIs (3)

74

Figure 4.21 Build in APIs (4)

Build storage for media: photos, etc. using firebase storage.

75

4.2 System interface design

 Deploy with Netlify at url https://pandemic-management.netlify.app/

Login

Figure 4.22 Login interface

The login home page is the first page visitors see when accessing the

epidemiological management website. This is where users use their existing account to

log in to use the system or, if they do not have an account, they need to register to use it.

76

Register

Figure 4.23 Register interface

Users can register user accounts for three types of users according to usage needs:

Civilian, Medical Staff, Administrators.

 Civilian: For this user, you need to use a phone number and password to

register. Click to select the "None" function button for Civilian users. Select

specific address information in order from Province, City - District -

Commune, Ward. The request will be automatically approved by the system

and can be used immediately.

 Medical Staff: For this user, you need to use a phone number and password

to register. Click to select the "Medical Staff" function button for Medical

Staff users. Select specific working units by Province, City - District -

Commune, Ward. Upload relevant documents and certificates used to

77

authenticate your identity. After clicking register, the system will

automatically record the results and need to wait for approval from the

system administrator before you can use it.

 Administrators: For this user, you need to use a phone number and password

to register. Click to select the " Administrator" function button for

Administrators users. Select specific working units by Province, City -

District - Commune, Ward. Upload relevant documents and certificates used

to authenticate your identity. After pressing register, the system will

automatically record the results and need to wait for approval from a system

administrator with higher authority before you can use it.

Account approval

Figure 4.24 Account approval interface

Use the Administrator account to track account approval requests from medical

staff and administrators.

78

Double-click on the user you want to approve. Select close to cancel the operation,

select the document icon to check the certificate, select approve to approve the account,

select reject to reject the request.

 Personal information

Figure 4.25 Personal information interface

Users need to fill in personal information including Full name, date of birth, gender,

nationality, click on epidemiological information F0, F1, F2, None. Fill in address

information and note the specific address. Then press the "Update information" button

for the system to automatically record.

Filling in personal information completely and accurately is very important. It

makes statistical work and information verification easy, saving time for medical staff

and senior managers.

79

Announcement/Post

Figure 4.26 Announcement/Post interface

Displays announcements and posts from medical staff, managers and residents.

Allows you to review your posts. An announcement, post includes a title and content.

After the system records post requests from Civilian users, Medical Staff users, and

Administrators users, the administrator account needs to approve them before the users

can view them.

80

Approve announcement/post

Figure 4.27 Approve announcement/post interface

Use the Administrator account to approve announcements/post from Civilian users,

Medical Staff users and Administrators users.

Check the information and authenticity of the announcement/post before clicking

approve to agree to post the announcement/post or click decline to refuse to approve the

announcement/post.

81

General declaration

Figure 4.28 General declaration interface

Use the “yes” or “no” quick choice form. The quick declaration list helps medical

staff quickly compile data on individuals at risk of infection.

General declaration list

Figure 4.29 General declaration list interface

Medical staff compile statistics on users at risk of epidemic and contact them

according to the information on the form.

82

After the system records the results of people's declarations, medical staff can

check the declarations within the scope of management. Accurate statistics and data help

update epidemic information in the region.

Entry declaration

Figure 4.30 Entry declaration interface

Civilian users declare entry information according to the form available on the

form.

Entry declaration list

Figure 4.31 Entry declaration list interface

 Similar to the declaration above.

83

Move declaration

Figure 4.32 Move declaration interface

Similar to the declaration above.

Move declaration list

 Figure 4.33 Move declaration list interface

 Similar to the declaration above.

84

Situation reports pandemic

 Figure 4.34 Situation reports pandemic interface (1)

The city unit displays the epidemic situation. Including unit code, alert level, total

number of cases, total number of deaths, total number of recoveries, number of new

cases, number of new deaths, number of new recoveries.

Figure 4.35 Situation reports pandemic interface (2)

85

Double-click on the province/city unit to select to view district-level Pandemic

information. Similarly, double-click on the district-level unit to see the epidemic in the

commune/ward.

Update situation pandemic

Figure 4.36 Update situation pandemic interface

To be able to update the Pandemic situation, you need to use a Commune/Ward

administrator account. Including the number of new cases, the number of new deaths

and the number of new recoveries. If you do not enter a date, the system will

automatically select the current date to retrieve data. After clicking update, the system

will automatically add District units - Province/City units.

86

 Pandemic map

Figure 4.37 Pandemic map interface (1)

The Pandemic map takes data directly from the epidemic situation function. Allows

users to view areas on the map and the epidemic situation of each area.

In particular, the Pandemic situation of the regions is expressed according to

indicators such as: number of cases, number of recovered cases, number of deaths, etc.

In addition, depending on the level of epidemic in that area, there will be different

colors. Includes 4 translation levels corresponding to 4 colors:

 Level 0 – Green

 Level 1 – Yellow

 Level 2 – Orange

 Level 3 – Red

87

Figure 4.38 Pandemic map interface (2)

Use the mouse wheel to zoom out or zoom in on the map. Click on the area you

want to view to see the epidemic situation displayed on the map. Click on the pandemic

chart to see the epidemic chart in that province/city.

Pandemic chart

Figure 4.39 Pandemic chart interface (1)

The chart shows the pandemic situation of the province.

88

Figure 4.40 Pandemic chart interface (2)

The chart shows the pandemic situation in the country and based on updated data

from commune/ward administrators including the number of new cases, the number of

new deaths, the number of new recoveries and dates.

The colors of the chart are displayed as follows:

 The number of new cases: Yellow

 The number of new deaths: Red

 The number of new recoveries: Green

89

New pandemic

Figure 4.41 New pandemic interface

When clicking the "action" button on the list of new epidemics, the Civilian User

fills in personal information and answers the questions available in the form. After click

“save” the system will automatically record the results.

New pandemic list

Figure 4.42 New pandemic list interface

After the system records the results, medical staff can view civilians' declarations

through the "action" button.

90

Add new pandemic

Figure 4.43 Add new pandemic interface

Medical staff can create new pandemic declaration forms by pressing the "add

question" button to create and fill in the desired question forms. Click “save” to create

the template.

4.3 Conclusion

The development and deployment of the application has been completed, integrating

necessary functions and ensuring system stability and security. The system is now ready

for operation, meeting the set requirements and addressing practical issues in managing

the pandemic. Next, we will summarize the entire process, evaluate the system's

effectiveness, and propose future development directions, thereby opening new

potentials and continually improving the system.

91

CHAPTER V: CONCLUSION

5.1 Results and evaluation

5.1.1 Results

“Building a website for epidemiology management using mongodb database”

project designed for three main stakeholders: administrators, medica staff, and civilian,

has been successfully completed with numerous essential features aimed at supporting

effective epidemic management and prevention.

The result of the project is a complete epidemiology management system that meets

the set requirements and brings practical benefits to epidemic prevention and control

efforts. The system not only aids administrators and medical staff in working more

efficiently but also provides the public with a valuable tool to protect their own health

and that of the community.

The main functions of the system for civilians: register, login, personal

information, posting, viewing notifications from administrators and medical staff,

declaration, epidemic situation, epidemic map, epidemic chart, declaration of new

epidemics.

The main functions of the system for medical staff: register, login, personal

information, posting notices to civilians, viewing information requesting support from

civilians and notifications from administrators. Manage and track declarations in the

area, view epidemic situations, epidemic maps, epidemic charts, create new epidemic

declaration forms.

The main functions of the system for administrators: register, login, personal

information, browsing accounts of medical staff and administrators in the area, browsing

posting, notifications from civilians, medical staff, administrators in the area, updated

epidemic situation, epidemic map, epidemic chart.

92

5.1.2 Evaluation

The project execution involved various stages including information collection,

system design, technology research, programming, and testing to ensure the system

operates stably and efficiently.

In the initial phase, I gathered information on different epidemics, epidemiological

conditions across various regions, the needs of the public, and specific requirements from

medical staff. The programming and testing phases were conducted rigorously to ensure

the system's stability, and efficiency. Functional modules were developed and tested

independently before being integrated and subjected to system-wide testing. I also

conducted performance tests to ensure the system could handle large volumes of data

and simultaneous access by multiple users.

In summary, the development of the epidemiology management system has

successfully as the initial goals with the need for surveys and solutions, bringing practical

benefits to epidemic prevention and control efforts. It not only helps administrators and

medical staff work more effectively, but also provides civilians with a valuable system

to protect their own health and that of the community.

5.2 Limitation

Although, I have successfully built an epidemiology management system website.

But due to poor knowledge and limited implementation time, the website still has many

problems in research, design and implementation. This system is still rudimentary, has

poor functionality and has not achieved high accuracy. Some incomplete functions

sometimes cause errors. The built database for testing is still small with a few hundred

cases and with limitations in scenarios. Weak security, vulnerable to data exploitation.

Appropriate web technologies have not been deployed and applied, leading to system

construction that is still sketchy, the general interface is not innovative, and system

optimization is not effective. Poor survey to propose a new system and improve the

system. Using mongodb database requires high memory to store data. During the project

93

implementation, I realized the necessity and importance of learning and self-

development. I hope to be able to develop the project more effectively and apply it into

practice in the future.

5.3 Future development

As we look to the future, I want to implement an epidemiology management system

to make it more robust, efficient, and capable of addressing a broader range of health

challenges.

One significant upgrade involves transitioning from traditional web technologies

to ReactJS for the front-end development. ReactJS, with its component-based

architecture and efficient rendering, will allow us to build a more responsive and

interactive user interface.

Another development will be the implementation of a real-time epidemic

information system. Utilizing WebSocket or similar real-time communication

technologies. Real-time data will be crucial in managing epidemic outbreaks more

effectively, allowing for quicker response times and more accurate situational

awareness.

Furthermore, I want to combine advanced analytics and machine learning

algorithms to better understand epidemic patterns and predict future outbreaks. By

leveraging big data and AI, the application can identify trends and anomalies that human

analysts may not immediately notice. These insights will help health authorities make

informed decisions and proactively implement preventative measures.

These advances will significantly improve the app's ability to manage and respond

to many health challenges, ultimately contributing to more effective epidemic prevention

and control.

94

REFERENCES

[1] Dùng Firebase Storage như backend lưu trữ dữ liệu cho ứng dụng Pham Xuan Lu

https://viblo.asia/p/dung-firebase-storage-nhu-backend-luu-tru-du-lieu-cho-ung-dung-

android-ZDEvLYAzGJb

[2] Use Case Diagram iviettech.vn https://iviettech.vn/blog/543-ban-ve-use-case-use-

case-diagram.html

[3] https://www.linkedin.com/posts/akash-satpute31_mongodb-is-a-popular-open-

source-nosql-database-activity-7181241114153164801-j0Cb

[4] https://www.imensosoftware.com/blog/why-nodejs-is-the-perfect-choice-for-

building-scalable-and-high-performance-applications/

[5] https://geobgu.xyz/web-mapping/leaflet.html

[6] https://www.npmjs.com/package/@canvasjs/charts

[7] https://www.aptible.com/docs/getting-started/deploy-starter-template/node-js

[8] https://support.planet.com/hc/en-us/articles/360016337117-Creating-a-GeoJSON-

file

[9] https://www.sentrient.com.au/blog/covid-19-management-system

[10] https://www.researchgate.net/figure/Promise-of-MSC-therapies-for-COVID-19-A-

Rapid-global-spread-of-severe-acute_fig1_341496418

[11] https://www.semanticscholar.org/paper/COVID-19%3A-Epidemiology%2C-

Evolution%2C-and-Perspectives-Sun-

He/2f547947bf87380c7fab13ba2c663bbbe9e643ec/figure/0

[12] https://bloganchoi.com/mang-xa-hoi-anh-huong-suc-khoe-tam-than-trong-dai-

dich/

https://viblo.asia/p/dung-firebase-storage-nhu-backend-luu-tru-du-lieu-cho-ung-dung-android-ZDEvLYAzGJb
https://viblo.asia/p/dung-firebase-storage-nhu-backend-luu-tru-du-lieu-cho-ung-dung-android-ZDEvLYAzGJb
https://iviettech.vn/blog/543-ban-ve-use-case-use-case-diagram.html
https://iviettech.vn/blog/543-ban-ve-use-case-use-case-diagram.html
https://www.linkedin.com/posts/akash-satpute31_mongodb-is-a-popular-open-source-nosql-database-activity-7181241114153164801-j0Cb
https://www.linkedin.com/posts/akash-satpute31_mongodb-is-a-popular-open-source-nosql-database-activity-7181241114153164801-j0Cb
https://www.imensosoftware.com/blog/why-nodejs-is-the-perfect-choice-for-building-scalable-and-high-performance-applications/
https://www.imensosoftware.com/blog/why-nodejs-is-the-perfect-choice-for-building-scalable-and-high-performance-applications/
https://geobgu.xyz/web-mapping/leaflet.html
https://www.npmjs.com/package/@canvasjs/charts
https://www.aptible.com/docs/getting-started/deploy-starter-template/node-js
https://support.planet.com/hc/en-us/articles/360016337117-Creating-a-GeoJSON-file
https://support.planet.com/hc/en-us/articles/360016337117-Creating-a-GeoJSON-file
https://www.sentrient.com.au/blog/covid-19-management-system
https://www.researchgate.net/figure/Promise-of-MSC-therapies-for-COVID-19-A-Rapid-global-spread-of-severe-acute_fig1_341496418
https://www.researchgate.net/figure/Promise-of-MSC-therapies-for-COVID-19-A-Rapid-global-spread-of-severe-acute_fig1_341496418
https://www.semanticscholar.org/paper/COVID-19%3A-Epidemiology%2C-Evolution%2C-and-Perspectives-Sun-He/2f547947bf87380c7fab13ba2c663bbbe9e643ec/figure/0
https://www.semanticscholar.org/paper/COVID-19%3A-Epidemiology%2C-Evolution%2C-and-Perspectives-Sun-He/2f547947bf87380c7fab13ba2c663bbbe9e643ec/figure/0
https://www.semanticscholar.org/paper/COVID-19%3A-Epidemiology%2C-Evolution%2C-and-Perspectives-Sun-He/2f547947bf87380c7fab13ba2c663bbbe9e643ec/figure/0
https://bloganchoi.com/mang-xa-hoi-anh-huong-suc-khoe-tam-than-trong-dai-dich/
https://bloganchoi.com/mang-xa-hoi-anh-huong-suc-khoe-tam-than-trong-dai-dich/

95

[13] https://www.path.org/our-impact/articles/open-source-software-tool-helps-

governments-monitor-covid-19/

[14] https://wallhere.com/vi/wallpaper/1333085

[15] https://appsbd.com/how-to-create-map-using-leaflet-js-best-way-to-figure/

[16] https://support.planet.com/hc/en-us/articles/360016337117-Creating-a-GeoJSON-

file

[17] https://www.npmjs.com/package/@canvasjs/charts

[18] https://www.mongodb.com/products/tools

[19] https://www.geeksforgeeks.org/how-to-add-collaborators-to-a-firebase-app/

[20] https://medium.com/scalp/how-to-back-up-firebase-firestore-and-firebase-storage-

bucket-b6d8dbc0cd7c

[21] https://cloudsundial.com/salesforce-server-access-oauth-flows

https://www.path.org/our-impact/articles/open-source-software-tool-helps-governments-monitor-covid-19/
https://www.path.org/our-impact/articles/open-source-software-tool-helps-governments-monitor-covid-19/
https://support.planet.com/hc/en-us/articles/360016337117-Creating-a-GeoJSON-file
https://support.planet.com/hc/en-us/articles/360016337117-Creating-a-GeoJSON-file
https://www.npmjs.com/package/@canvasjs/charts
https://www.mongodb.com/products/tools
https://www.geeksforgeeks.org/how-to-add-collaborators-to-a-firebase-app/
https://medium.com/scalp/how-to-back-up-firebase-firestore-and-firebase-storage-bucket-b6d8dbc0cd7c
https://medium.com/scalp/how-to-back-up-firebase-firestore-and-firebase-storage-bucket-b6d8dbc0cd7c
https://cloudsundial.com/salesforce-server-access-oauth-flows

