Browsing by Author Ahmad, Husain

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 1 of 1
  • item.jpg
  • Journal Article


  • Authors: Ahmad, Husain (2021)

  • Polythiophene (PTh) and polythiophene/molybdenum oxide nanocomposites (PTh/MoO3) were syn- thesized by an in-situ chemical oxidative method. The successful synthesis of both the materials was confirmed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The thermal stability of the materials was examined in terms of conductivity retention under isothermal and cyclic aging conditions. PTh/ MoO3 showed much greater conductivity retention (i.e., thermal stability) than pristine PTh under both conditions. PTh/MoO3 showed 18.22 times greater electrical conductivity than pristine P...

Browsing by Author Ahmad, Husain

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 1 of 1
  • item.jpg
  • Journal Article


  • Authors: Ahmad, Husain (2021)

  • Polythiophene (PTh) and polythiophene/molybdenum oxide nanocomposites (PTh/MoO3) were syn- thesized by an in-situ chemical oxidative method. The successful synthesis of both the materials was confirmed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The thermal stability of the materials was examined in terms of conductivity retention under isothermal and cyclic aging conditions. PTh/ MoO3 showed much greater conductivity retention (i.e., thermal stability) than pristine PTh under both conditions. PTh/MoO3 showed 18.22 times greater electrical conductivity than pristine P...