Browsing by Author Angappane, S.

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 1 of 1
  • item.jpg
  • Journal Article


  • Authors: Swathi, S.P.; Angappane, S. (2021)

  • The stochastic nature of conductive filament formation and dissolution always leads to large fluctuations of key device parameters that hinder the practical applications of resistive random-access memories (RRAMs). Here, we report a simple bilayer oxide-based device structure of Al/TiOx/TiOy/FTO (x < y) employed to address this variability issue and improve the overall performance of the memory device. The bipolar resistive switching performance remarkably improved in these bilayer devices with lower forming voltage (~1 V), set/reset voltages of 0.4/-0.6 V, a programming current of 10 mA, an enlarged ON/ OFF ratio (>103), longer retention (>103 s), and better uniformity as compa...

Browsing by Author Angappane, S.

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 1 of 1
  • item.jpg
  • Journal Article


  • Authors: Swathi, S.P.; Angappane, S. (2021)

  • The stochastic nature of conductive filament formation and dissolution always leads to large fluctuations of key device parameters that hinder the practical applications of resistive random-access memories (RRAMs). Here, we report a simple bilayer oxide-based device structure of Al/TiOx/TiOy/FTO (x < y) employed to address this variability issue and improve the overall performance of the memory device. The bipolar resistive switching performance remarkably improved in these bilayer devices with lower forming voltage (~1 V), set/reset voltages of 0.4/-0.6 V, a programming current of 10 mA, an enlarged ON/ OFF ratio (>103), longer retention (>103 s), and better uniformity as compa...